Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition

Footstep recognition is a relatively new biometric which aims to discriminate people using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatiotemporal information contained in the footstep signals for person recogni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-04, Vol.35 (4), p.823-834
Hauptverfasser: Vera-Rodriguez, R., Mason, J. S. D., Fierrez, J., Ortega-Garcia, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 4
container_start_page 823
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 35
creator Vera-Rodriguez, R.
Mason, J. S. D.
Fierrez, J.
Ortega-Garcia, J.
description Footstep recognition is a relatively new biometric which aims to discriminate people using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatiotemporal information contained in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 people. Results show very similar performance for both spatial and temporal approaches (5 to 15 percent EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5 to 10 percent EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves to simulate conditions of different potential applications such as smart homes or security access scenarios.
doi_str_mv 10.1109/TPAMI.2012.164
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365508486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6257397</ieee_id><sourcerecordid>1365508486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6ed25f1faad5df0552b46f2b8c49d7ccb2e0f1e84c62be5a75635a9acc6aebf93</originalsourceid><addsrcrecordid>eNpFkE1r20AQhpfSkLhJrr0Uyl4KucjZD-3X0Zg4NSQktEmvYrSaLSqSVt2VA_n3lWs3Pc0w7zPv4SHkI2dLzpm7fnpc3W-XgnGx5Lp8RxbcSVdIJd17smBci8JaYc_Ih5x_McZLxeQpORPCaqtLsyA_1rEfIcHUviBdDdC95jZTGBq62eU2DjQG-n2c4zhhP8YEHd0OIaZ-fxrovNFNjFOecKTf0MefQ7sPLshJgC7j5XGek-fNzdP6a3H3cLtdr-4KL62aCo2NUIEHgEY1gSkl6lIHUVtfusZ4XwtkgaMtvRY1KjBKSwUOvNeAdXDynFwdescUf-8wT1XfZo9dBwPGXa641EoxW1o9o8sD6lPMOWGoxtT2kF4rzqq9y-qvy2rvsppdzg-fj927usfmDf8nbwa-HAHIHrqQYPBt_s8ZbYxxYuY-HbgWEd9iLZSRzsg_M8KHRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365508486</pqid></control><display><type>article</type><title>Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Vera-Rodriguez, R. ; Mason, J. S. D. ; Fierrez, J. ; Ortega-Garcia, J.</creator><creatorcontrib>Vera-Rodriguez, R. ; Mason, J. S. D. ; Fierrez, J. ; Ortega-Garcia, J.</creatorcontrib><description>Footstep recognition is a relatively new biometric which aims to discriminate people using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatiotemporal information contained in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 people. Results show very similar performance for both spatial and temporal approaches (5 to 15 percent EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5 to 10 percent EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves to simulate conditions of different potential applications such as smart homes or security access scenarios.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2012.164</identifier><identifier>PMID: 22868647</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Biomechanical Phenomena - physiology ; Biometric Identification - instrumentation ; Biometric Identification - methods ; Biometrics ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Feature extraction ; Foot - physiology ; footstep recognition ; Gait - physiology ; gait recognition ; Humans ; Intelligent sensors ; Legged locomotion ; Models, Biological ; pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Pressure ; pressure analysis ; Sensor fusion ; Sensor phenomena and characterization ; Signal Processing, Computer-Assisted ; Software ; Walking</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-04, Vol.35 (4), p.823-834</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6ed25f1faad5df0552b46f2b8c49d7ccb2e0f1e84c62be5a75635a9acc6aebf93</citedby><cites>FETCH-LOGICAL-c385t-6ed25f1faad5df0552b46f2b8c49d7ccb2e0f1e84c62be5a75635a9acc6aebf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6257397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6257397$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27677792$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22868647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vera-Rodriguez, R.</creatorcontrib><creatorcontrib>Mason, J. S. D.</creatorcontrib><creatorcontrib>Fierrez, J.</creatorcontrib><creatorcontrib>Ortega-Garcia, J.</creatorcontrib><title>Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Footstep recognition is a relatively new biometric which aims to discriminate people using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatiotemporal information contained in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 people. Results show very similar performance for both spatial and temporal approaches (5 to 15 percent EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5 to 10 percent EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves to simulate conditions of different potential applications such as smart homes or security access scenarios.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biometric Identification - instrumentation</subject><subject>Biometric Identification - methods</subject><subject>Biometrics</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Foot - physiology</subject><subject>footstep recognition</subject><subject>Gait - physiology</subject><subject>gait recognition</subject><subject>Humans</subject><subject>Intelligent sensors</subject><subject>Legged locomotion</subject><subject>Models, Biological</subject><subject>pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pressure</subject><subject>pressure analysis</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Software</subject><subject>Walking</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkE1r20AQhpfSkLhJrr0Uyl4KucjZD-3X0Zg4NSQktEmvYrSaLSqSVt2VA_n3lWs3Pc0w7zPv4SHkI2dLzpm7fnpc3W-XgnGx5Lp8RxbcSVdIJd17smBci8JaYc_Ih5x_McZLxeQpORPCaqtLsyA_1rEfIcHUviBdDdC95jZTGBq62eU2DjQG-n2c4zhhP8YEHd0OIaZ-fxrovNFNjFOecKTf0MefQ7sPLshJgC7j5XGek-fNzdP6a3H3cLtdr-4KL62aCo2NUIEHgEY1gSkl6lIHUVtfusZ4XwtkgaMtvRY1KjBKSwUOvNeAdXDynFwdescUf-8wT1XfZo9dBwPGXa641EoxW1o9o8sD6lPMOWGoxtT2kF4rzqq9y-qvy2rvsppdzg-fj927usfmDf8nbwa-HAHIHrqQYPBt_s8ZbYxxYuY-HbgWEd9iLZSRzsg_M8KHRA</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Vera-Rodriguez, R.</creator><creator>Mason, J. S. D.</creator><creator>Fierrez, J.</creator><creator>Ortega-Garcia, J.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130401</creationdate><title>Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition</title><author>Vera-Rodriguez, R. ; Mason, J. S. D. ; Fierrez, J. ; Ortega-Garcia, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6ed25f1faad5df0552b46f2b8c49d7ccb2e0f1e84c62be5a75635a9acc6aebf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biometric Identification - instrumentation</topic><topic>Biometric Identification - methods</topic><topic>Biometrics</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Foot - physiology</topic><topic>footstep recognition</topic><topic>Gait - physiology</topic><topic>gait recognition</topic><topic>Humans</topic><topic>Intelligent sensors</topic><topic>Legged locomotion</topic><topic>Models, Biological</topic><topic>pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pressure</topic><topic>pressure analysis</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Software</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vera-Rodriguez, R.</creatorcontrib><creatorcontrib>Mason, J. S. D.</creatorcontrib><creatorcontrib>Fierrez, J.</creatorcontrib><creatorcontrib>Ortega-Garcia, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vera-Rodriguez, R.</au><au>Mason, J. S. D.</au><au>Fierrez, J.</au><au>Ortega-Garcia, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-04-01</date><risdate>2013</risdate><volume>35</volume><issue>4</issue><spage>823</spage><epage>834</epage><pages>823-834</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Footstep recognition is a relatively new biometric which aims to discriminate people using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatiotemporal information contained in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 people. Results show very similar performance for both spatial and temporal approaches (5 to 15 percent EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5 to 10 percent EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves to simulate conditions of different potential applications such as smart homes or security access scenarios.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>22868647</pmid><doi>10.1109/TPAMI.2012.164</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2013-04, Vol.35 (4), p.823-834
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_1365508486
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Biomechanical Phenomena - physiology
Biometric Identification - instrumentation
Biometric Identification - methods
Biometrics
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Feature extraction
Foot - physiology
footstep recognition
Gait - physiology
gait recognition
Humans
Intelligent sensors
Legged locomotion
Models, Biological
pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Pressure
pressure analysis
Sensor fusion
Sensor phenomena and characterization
Signal Processing, Computer-Assisted
Software
Walking
title Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20and%20Fusion%20of%20Spatiotemporal%20Information%20for%20Footstep%20Recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Vera-Rodriguez,%20R.&rft.date=2013-04-01&rft.volume=35&rft.issue=4&rft.spage=823&rft.epage=834&rft.pages=823-834&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2012.164&rft_dat=%3Cproquest_RIE%3E1365508486%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365508486&rft_id=info:pmid/22868647&rft_ieee_id=6257397&rfr_iscdi=true