Energy-Aware Competitive Power Control in Relay-Assisted Interference Wireless Networks

Competitive power control for energy efficiency maximization in wireless interference networks is addressed, for the scenarios in which the users' SINR can be expressed as either (a) γ = (αp)/(φp + ω), or (b) γ = (αp + βp 2 )/(φp + ω), with p the user's transmit power. The considered SINR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2013-04, Vol.12 (4), p.1860-1871
Hauptverfasser: Zappone, Alessio, Zhijiat Chong, Jorswieck, Eduard A., Buzzi, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1871
container_issue 4
container_start_page 1860
container_title IEEE transactions on wireless communications
container_volume 12
creator Zappone, Alessio
Zhijiat Chong
Jorswieck, Eduard A.
Buzzi, Stefano
description Competitive power control for energy efficiency maximization in wireless interference networks is addressed, for the scenarios in which the users' SINR can be expressed as either (a) γ = (αp)/(φp + ω), or (b) γ = (αp + βp 2 )/(φp + ω), with p the user's transmit power. The considered SINR expressions naturally arise in relay-assisted systems. The energy efficiency is measured in bit/Joule and is defined as the ratio of a proper function of the SINR, divided by the consumed power. Unlike most previous related works, in the definition of the consumed power, not only the transmit power, but also the circuit power needed to operate the devices is accounted for. A non-cooperative game theoretic approach is employed and distributed power control algorithms are proposed. For both SINR expressions (a) and (b), it is shown that the competitive power allocation problem always admits a Nash equilibrium. Moreover, for the SINR (a), the equilibrium is also shown to be unique and the best-response dynamic is guaranteed to converge to such unique equilibrium. For the two-user case, the efficient computation of the Pareto frontier of the considered game is addressed, and, for benchmarking purposes, a social optimum solution with fairness constraint is derived.
doi_str_mv 10.1109/TWC.2013.031313.121103
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365157592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6485028</ieee_id><sourcerecordid>1365157592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-3977b7009d39bd0b3aa2fc6b62776863ec7e3b816b45a769661df37f3ef561d3</originalsourceid><addsrcrecordid>eNpdkN9LwzAQgIMoOKd_gSAFEXxpzY8maR_HmDoYKjLYY0jbi2R27Uw6x_57Uzr2IPdwx913x_EhdEdwQgjOn5araUIxYQlmJERCaGizMzQinGcxpWl23tdMxIRKcYmuvF9jTKTgfIRWswbc1yGe7LWDaNputtDZzv5C9NHuwYVO07m2jmwTfUKtA-i99R1U0bzpwBlw0JQQrayDGryP3qDbt-7bX6MLo2sPN8c8Rsvn2XL6Gi_eX-bTySIuU0a7mOVSFhLjvGJ5UeGCaU1NKQpBpRSZYFBKYEVGRJFyLUUuBKkMk4aB4aFkY_Q4nN269mcHvlMb60uoa91Au_OKMMEJlzynAb3_h67bnWvCc4FKJU2DNxwoMVCla713YNTW2Y12B0Ww6nWroFv1utWgWw26w-LD8bz2pa6N001p_WmbSkZkJvo3bgfOAsBpLNKMY5qxPz6qiB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1347241210</pqid></control><display><type>article</type><title>Energy-Aware Competitive Power Control in Relay-Assisted Interference Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zappone, Alessio ; Zhijiat Chong ; Jorswieck, Eduard A. ; Buzzi, Stefano</creator><creatorcontrib>Zappone, Alessio ; Zhijiat Chong ; Jorswieck, Eduard A. ; Buzzi, Stefano</creatorcontrib><description>Competitive power control for energy efficiency maximization in wireless interference networks is addressed, for the scenarios in which the users' SINR can be expressed as either (a) γ = (αp)/(φp + ω), or (b) γ = (αp + βp 2 )/(φp + ω), with p the user's transmit power. The considered SINR expressions naturally arise in relay-assisted systems. The energy efficiency is measured in bit/Joule and is defined as the ratio of a proper function of the SINR, divided by the consumed power. Unlike most previous related works, in the definition of the consumed power, not only the transmit power, but also the circuit power needed to operate the devices is accounted for. A non-cooperative game theoretic approach is employed and distributed power control algorithms are proposed. For both SINR expressions (a) and (b), it is shown that the competitive power allocation problem always admits a Nash equilibrium. Moreover, for the SINR (a), the equilibrium is also shown to be unique and the best-response dynamic is guaranteed to converge to such unique equilibrium. For the two-user case, the efficient computation of the Pareto frontier of the considered game is addressed, and, for benchmarking purposes, a social optimum solution with fairness constraint is derived.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2013.031313.121103</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computational efficiency ; Electric utilities ; Energy consumption ; Energy efficiency ; Exact sciences and technology ; Game theory ; Games ; heterogeneous networks ; Interference ; Interference channel ; Mathematical models ; Maximization ; Nash equilibrium ; Power consumption ; Power control ; Receivers ; Relays ; Signal to noise ratio ; Studies ; Telecommunications ; Telecommunications and information theory ; Teleprocessing networks. Isdn ; Transmitters ; Valuation and optimization of characteristics. Simulation</subject><ispartof>IEEE transactions on wireless communications, 2013-04, Vol.12 (4), p.1860-1871</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-3977b7009d39bd0b3aa2fc6b62776863ec7e3b816b45a769661df37f3ef561d3</citedby><cites>FETCH-LOGICAL-c432t-3977b7009d39bd0b3aa2fc6b62776863ec7e3b816b45a769661df37f3ef561d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6485028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6485028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27317862$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zappone, Alessio</creatorcontrib><creatorcontrib>Zhijiat Chong</creatorcontrib><creatorcontrib>Jorswieck, Eduard A.</creatorcontrib><creatorcontrib>Buzzi, Stefano</creatorcontrib><title>Energy-Aware Competitive Power Control in Relay-Assisted Interference Wireless Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Competitive power control for energy efficiency maximization in wireless interference networks is addressed, for the scenarios in which the users' SINR can be expressed as either (a) γ = (αp)/(φp + ω), or (b) γ = (αp + βp 2 )/(φp + ω), with p the user's transmit power. The considered SINR expressions naturally arise in relay-assisted systems. The energy efficiency is measured in bit/Joule and is defined as the ratio of a proper function of the SINR, divided by the consumed power. Unlike most previous related works, in the definition of the consumed power, not only the transmit power, but also the circuit power needed to operate the devices is accounted for. A non-cooperative game theoretic approach is employed and distributed power control algorithms are proposed. For both SINR expressions (a) and (b), it is shown that the competitive power allocation problem always admits a Nash equilibrium. Moreover, for the SINR (a), the equilibrium is also shown to be unique and the best-response dynamic is guaranteed to converge to such unique equilibrium. For the two-user case, the efficient computation of the Pareto frontier of the considered game is addressed, and, for benchmarking purposes, a social optimum solution with fairness constraint is derived.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>Electric utilities</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Games</subject><subject>heterogeneous networks</subject><subject>Interference</subject><subject>Interference channel</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Nash equilibrium</subject><subject>Power consumption</subject><subject>Power control</subject><subject>Receivers</subject><subject>Relays</subject><subject>Signal to noise ratio</subject><subject>Studies</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teleprocessing networks. Isdn</subject><subject>Transmitters</subject><subject>Valuation and optimization of characteristics. Simulation</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkN9LwzAQgIMoOKd_gSAFEXxpzY8maR_HmDoYKjLYY0jbi2R27Uw6x_57Uzr2IPdwx913x_EhdEdwQgjOn5araUIxYQlmJERCaGizMzQinGcxpWl23tdMxIRKcYmuvF9jTKTgfIRWswbc1yGe7LWDaNputtDZzv5C9NHuwYVO07m2jmwTfUKtA-i99R1U0bzpwBlw0JQQrayDGryP3qDbt-7bX6MLo2sPN8c8Rsvn2XL6Gi_eX-bTySIuU0a7mOVSFhLjvGJ5UeGCaU1NKQpBpRSZYFBKYEVGRJFyLUUuBKkMk4aB4aFkY_Q4nN269mcHvlMb60uoa91Au_OKMMEJlzynAb3_h67bnWvCc4FKJU2DNxwoMVCla713YNTW2Y12B0Ww6nWroFv1utWgWw26w-LD8bz2pa6N001p_WmbSkZkJvo3bgfOAsBpLNKMY5qxPz6qiB8</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Zappone, Alessio</creator><creator>Zhijiat Chong</creator><creator>Jorswieck, Eduard A.</creator><creator>Buzzi, Stefano</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130401</creationdate><title>Energy-Aware Competitive Power Control in Relay-Assisted Interference Wireless Networks</title><author>Zappone, Alessio ; Zhijiat Chong ; Jorswieck, Eduard A. ; Buzzi, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-3977b7009d39bd0b3aa2fc6b62776863ec7e3b816b45a769661df37f3ef561d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>Electric utilities</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Games</topic><topic>heterogeneous networks</topic><topic>Interference</topic><topic>Interference channel</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Nash equilibrium</topic><topic>Power consumption</topic><topic>Power control</topic><topic>Receivers</topic><topic>Relays</topic><topic>Signal to noise ratio</topic><topic>Studies</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teleprocessing networks. Isdn</topic><topic>Transmitters</topic><topic>Valuation and optimization of characteristics. Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zappone, Alessio</creatorcontrib><creatorcontrib>Zhijiat Chong</creatorcontrib><creatorcontrib>Jorswieck, Eduard A.</creatorcontrib><creatorcontrib>Buzzi, Stefano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zappone, Alessio</au><au>Zhijiat Chong</au><au>Jorswieck, Eduard A.</au><au>Buzzi, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Competitive Power Control in Relay-Assisted Interference Wireless Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>12</volume><issue>4</issue><spage>1860</spage><epage>1871</epage><pages>1860-1871</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Competitive power control for energy efficiency maximization in wireless interference networks is addressed, for the scenarios in which the users' SINR can be expressed as either (a) γ = (αp)/(φp + ω), or (b) γ = (αp + βp 2 )/(φp + ω), with p the user's transmit power. The considered SINR expressions naturally arise in relay-assisted systems. The energy efficiency is measured in bit/Joule and is defined as the ratio of a proper function of the SINR, divided by the consumed power. Unlike most previous related works, in the definition of the consumed power, not only the transmit power, but also the circuit power needed to operate the devices is accounted for. A non-cooperative game theoretic approach is employed and distributed power control algorithms are proposed. For both SINR expressions (a) and (b), it is shown that the competitive power allocation problem always admits a Nash equilibrium. Moreover, for the SINR (a), the equilibrium is also shown to be unique and the best-response dynamic is guaranteed to converge to such unique equilibrium. For the two-user case, the efficient computation of the Pareto frontier of the considered game is addressed, and, for benchmarking purposes, a social optimum solution with fairness constraint is derived.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TWC.2013.031313.121103</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2013-04, Vol.12 (4), p.1860-1871
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_miscellaneous_1365157592
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Computational efficiency
Electric utilities
Energy consumption
Energy efficiency
Exact sciences and technology
Game theory
Games
heterogeneous networks
Interference
Interference channel
Mathematical models
Maximization
Nash equilibrium
Power consumption
Power control
Receivers
Relays
Signal to noise ratio
Studies
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Transmitters
Valuation and optimization of characteristics. Simulation
title Energy-Aware Competitive Power Control in Relay-Assisted Interference Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Competitive%20Power%20Control%20in%20Relay-Assisted%20Interference%20Wireless%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zappone,%20Alessio&rft.date=2013-04-01&rft.volume=12&rft.issue=4&rft.spage=1860&rft.epage=1871&rft.pages=1860-1871&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2013.031313.121103&rft_dat=%3Cproquest_RIE%3E1365157592%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1347241210&rft_id=info:pmid/&rft_ieee_id=6485028&rfr_iscdi=true