APPROXIMATION OF AXISYMMETRIC DARCY FLOW USING MIXED FINITE ELEMENT METHODS
In this article we investigate the numerical approximation of the Darcy equations in an axisymmetric domain, subject to axisymmetric data, using mixed finite element methods. Rewriting the problem in cylindrical coordinates reduces the three-dimensional problem to a problem in two dimensions. This r...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2013-01, Vol.51 (3), p.1421-1442 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1442 |
---|---|
container_issue | 3 |
container_start_page | 1421 |
container_title | SIAM journal on numerical analysis |
container_volume | 51 |
creator | ERVIN, V. J. |
description | In this article we investigate the numerical approximation of the Darcy equations in an axisymmetric domain, subject to axisymmetric data, using mixed finite element methods. Rewriting the problem in cylindrical coordinates reduces the three-dimensional problem to a problem in two dimensions. This reduction to two dimensions requires the numerical analysis to be studied in suitably weighted Hubert spaces. In this setting the Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) approximation pairs are shown to be LBB stable and corresponding a priori error estimates are derived. Presented numerical experiments confirm the predicted rates of convergence for the RT and BDM approximations. |
doi_str_mv | 10.1137/120861631 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365157010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42004019</jstor_id><sourcerecordid>42004019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-faa60200dfe17dac06ccf2376e35782b2ee4b7ecff72cbb33179d3d9920720953</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFKzVgz9AWPCih-jObpJNjiFN2sV8lDbF9hSSzQZa2qZm24P_3pVKD56GgYdh3hehRyBvAIy_AyWeCy6DKzQA4jsWB06u0YAQ5lpgU_8W3Wm9IWb3gA3QRzCdzvKlSINC5BnOYxwsxXyVplExEyEeBbNwheMk_8SLucjGOBXLaIRjkYkiwlESpVFWYIMn-Wh-j27aaqvVw98cokUcFeHESvKxCIPEkgzo0WqryiWUkKZVwJtKElfKljLuKuZwj9ZUKbvmSrYtp7KuGQPuN6zxfUo4NZHYEL2c7x767uuk9LHcrbVU2221V91Jl8BcBxxOgBj6_I9uulO_N98ZZXtATV3MqNezkn2nda_a8tCvd1X_XQIpf2stL7Ua-3S2G33s-gu0TSCbgM9-AK6Oapo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348122083</pqid></control><display><type>article</type><title>APPROXIMATION OF AXISYMMETRIC DARCY FLOW USING MIXED FINITE ELEMENT METHODS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>ERVIN, V. J.</creator><creatorcontrib>ERVIN, V. J.</creatorcontrib><description>In this article we investigate the numerical approximation of the Darcy equations in an axisymmetric domain, subject to axisymmetric data, using mixed finite element methods. Rewriting the problem in cylindrical coordinates reduces the three-dimensional problem to a problem in two dimensions. This reduction to two dimensions requires the numerical analysis to be studied in suitably weighted Hubert spaces. In this setting the Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) approximation pairs are shown to be LBB stable and corresponding a priori error estimates are derived. Presented numerical experiments confirm the predicted rates of convergence for the RT and BDM approximations.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/120861631</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Airy equation ; Applied mathematics ; Approximation ; Axisymmetric ; Convergence ; Estimates ; Finite element method ; Interpolation ; Mathematical analysis ; Mathematical domains ; Mathematical problems ; Numerical analysis ; Symmetry ; Three dimensional ; Two dimensional ; Uniqueness ; Velocity</subject><ispartof>SIAM journal on numerical analysis, 2013-01, Vol.51 (3), p.1421-1442</ispartof><rights>Copyright ©2013 Society for Industrial and Applied Mathematics</rights><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-faa60200dfe17dac06ccf2376e35782b2ee4b7ecff72cbb33179d3d9920720953</citedby><cites>FETCH-LOGICAL-c312t-faa60200dfe17dac06ccf2376e35782b2ee4b7ecff72cbb33179d3d9920720953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42004019$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42004019$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>ERVIN, V. J.</creatorcontrib><title>APPROXIMATION OF AXISYMMETRIC DARCY FLOW USING MIXED FINITE ELEMENT METHODS</title><title>SIAM journal on numerical analysis</title><description>In this article we investigate the numerical approximation of the Darcy equations in an axisymmetric domain, subject to axisymmetric data, using mixed finite element methods. Rewriting the problem in cylindrical coordinates reduces the three-dimensional problem to a problem in two dimensions. This reduction to two dimensions requires the numerical analysis to be studied in suitably weighted Hubert spaces. In this setting the Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) approximation pairs are shown to be LBB stable and corresponding a priori error estimates are derived. Presented numerical experiments confirm the predicted rates of convergence for the RT and BDM approximations.</description><subject>A priori knowledge</subject><subject>Airy equation</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Axisymmetric</subject><subject>Convergence</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical domains</subject><subject>Mathematical problems</subject><subject>Numerical analysis</subject><subject>Symmetry</subject><subject>Three dimensional</subject><subject>Two dimensional</subject><subject>Uniqueness</subject><subject>Velocity</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1Lw0AQBuBFFKzVgz9AWPCih-jObpJNjiFN2sV8lDbF9hSSzQZa2qZm24P_3pVKD56GgYdh3hehRyBvAIy_AyWeCy6DKzQA4jsWB06u0YAQ5lpgU_8W3Wm9IWb3gA3QRzCdzvKlSINC5BnOYxwsxXyVplExEyEeBbNwheMk_8SLucjGOBXLaIRjkYkiwlESpVFWYIMn-Wh-j27aaqvVw98cokUcFeHESvKxCIPEkgzo0WqryiWUkKZVwJtKElfKljLuKuZwj9ZUKbvmSrYtp7KuGQPuN6zxfUo4NZHYEL2c7x767uuk9LHcrbVU2221V91Jl8BcBxxOgBj6_I9uulO_N98ZZXtATV3MqNezkn2nda_a8tCvd1X_XQIpf2stL7Ua-3S2G33s-gu0TSCbgM9-AK6Oapo</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>ERVIN, V. J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>APPROXIMATION OF AXISYMMETRIC DARCY FLOW USING MIXED FINITE ELEMENT METHODS</title><author>ERVIN, V. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-faa60200dfe17dac06ccf2376e35782b2ee4b7ecff72cbb33179d3d9920720953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>A priori knowledge</topic><topic>Airy equation</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Axisymmetric</topic><topic>Convergence</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical domains</topic><topic>Mathematical problems</topic><topic>Numerical analysis</topic><topic>Symmetry</topic><topic>Three dimensional</topic><topic>Two dimensional</topic><topic>Uniqueness</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ERVIN, V. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ERVIN, V. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPROXIMATION OF AXISYMMETRIC DARCY FLOW USING MIXED FINITE ELEMENT METHODS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>51</volume><issue>3</issue><spage>1421</spage><epage>1442</epage><pages>1421-1442</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this article we investigate the numerical approximation of the Darcy equations in an axisymmetric domain, subject to axisymmetric data, using mixed finite element methods. Rewriting the problem in cylindrical coordinates reduces the three-dimensional problem to a problem in two dimensions. This reduction to two dimensions requires the numerical analysis to be studied in suitably weighted Hubert spaces. In this setting the Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) approximation pairs are shown to be LBB stable and corresponding a priori error estimates are derived. Presented numerical experiments confirm the predicted rates of convergence for the RT and BDM approximations.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/120861631</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2013-01, Vol.51 (3), p.1421-1442 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365157010 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | A priori knowledge Airy equation Applied mathematics Approximation Axisymmetric Convergence Estimates Finite element method Interpolation Mathematical analysis Mathematical domains Mathematical problems Numerical analysis Symmetry Three dimensional Two dimensional Uniqueness Velocity |
title | APPROXIMATION OF AXISYMMETRIC DARCY FLOW USING MIXED FINITE ELEMENT METHODS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPROXIMATION%20OF%20AXISYMMETRIC%20DARCY%20FLOW%20USING%20MIXED%20FINITE%20ELEMENT%20METHODS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=ERVIN,%20V.%20J.&rft.date=2013-01-01&rft.volume=51&rft.issue=3&rft.spage=1421&rft.epage=1442&rft.pages=1421-1442&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/120861631&rft_dat=%3Cjstor_proqu%3E42004019%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348122083&rft_id=info:pmid/&rft_jstor_id=42004019&rfr_iscdi=true |