A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder

The H.264/AVC video coding standard can deliver high compression efficiency at a cost of increased complexity and power. The increasing popularity of video capture and playback on portable devices requires that the power of the video codec be kept to a minimum. This work implements several architect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2009-11, Vol.44 (11), p.2943-2956
Hauptverfasser: Sze, V., Finchelstein, D.F., Sinangil, M.E., Chandrakasan, A.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2956
container_issue 11
container_start_page 2943
container_title IEEE journal of solid-state circuits
container_volume 44
creator Sze, V.
Finchelstein, D.F.
Sinangil, M.E.
Chandrakasan, A.P.
description The H.264/AVC video coding standard can deliver high compression efficiency at a cost of increased complexity and power. The increasing popularity of video capture and playback on portable devices requires that the power of the video codec be kept to a minimum. This work implements several architecture optimizations such as increased parallelism, pipelining with FIFOs, multiple voltage/frequency domains, and custom voltage-scalable SRAMs that enable low voltage operation to reduce the power of a high-definition decoder. Dynamic voltage and frequency scaling can efficiently adapt to the varying workloads by leveraging the low voltage capabilities and domain partitioning of the decoder. An H.264/AVC Baseline Level 3.2 decoder ASIC was fabricated in 65-nm CMOS and verified. For high definition 720p video decoding at 30 frames per second (fps), it operates down to 0.7 V with a measured power of 1.8 mW, which is significantly lower than previously published results. The highly scalable decoder is capable of operating down to 0.5 V for decoding QCIF at 15 fps with a measured power of 29 muW.
doi_str_mv 10.1109/JSSC.2009.2028933
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365156756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5308724</ieee_id><sourcerecordid>2567655161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-339f19d3600e8774a52276c7e589d9b42bac36efd9ebf576bfe21dab34eb3d33</originalsourceid><addsrcrecordid>eNqN0ctKw0AUBuBBFKyXBxA3QVAESTpzzlyXpV6qFFy0VHfDJDmBlLapGbvw7U1pceFC3MwwzHd-OPyMXQieCcFd_2UyGWbAuesOsA7xgPWEUjYVBt8PWY9zYVPXgWN2EuO8e0ppRY_dDRKemXSWiMymy7dklIGW_cFsmBjg62RWl9Qk91Q0JbVn7KgKi0jn-_uUTR8fpsNROn59eh4OxmkhNXymiK4SrkTNOVljZFAARheGlHWlyyXkoUBNVekor5TReUUgypCjpBxLxFN2s4tdt83HhuKnX9axoMUirKjZRI8anOOCd_D2TyhQK6G0Ufp_FCVa6OjVLzpvNu2qW9g7YQCcdds8sUNF28TYUuXXbb0M7ZcX3G8L8dtC_LYQvy-km7neB4dYhEXVhlVRx59BAOlAc9O5y52riejnWyG3BiR-A9EWjIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917229896</pqid></control><display><type>article</type><title>A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder</title><source>IEEE Electronic Library (IEL)</source><creator>Sze, V. ; Finchelstein, D.F. ; Sinangil, M.E. ; Chandrakasan, A.P.</creator><creatorcontrib>Sze, V. ; Finchelstein, D.F. ; Sinangil, M.E. ; Chandrakasan, A.P.</creatorcontrib><description>The H.264/AVC video coding standard can deliver high compression efficiency at a cost of increased complexity and power. The increasing popularity of video capture and playback on portable devices requires that the power of the video codec be kept to a minimum. This work implements several architecture optimizations such as increased parallelism, pipelining with FIFOs, multiple voltage/frequency domains, and custom voltage-scalable SRAMs that enable low voltage operation to reduce the power of a high-definition decoder. Dynamic voltage and frequency scaling can efficiently adapt to the varying workloads by leveraging the low voltage capabilities and domain partitioning of the decoder. An H.264/AVC Baseline Level 3.2 decoder ASIC was fabricated in 65-nm CMOS and verified. For high definition 720p video decoding at 30 frames per second (fps), it operates down to 0.7 V with a measured power of 1.8 mW, which is significantly lower than previously published results. The highly scalable decoder is capable of operating down to 0.5 V for decoding QCIF at 15 fps with a measured power of 29 muW.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2009.2028933</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automatic voltage control ; cache memories ; Circuit properties ; CMOS digital integrated circuits ; CMOS memory circuits ; Coding standards ; Costs ; Decoders ; Decoding ; Design. Technologies. Operation analysis. Testing ; Devices ; Dynamic voltage scaling ; Electric potential ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; H.264/AVC ; High definition ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Low voltage ; low-power electronics ; Partitioning ; Pipeline processing ; Power measurement ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal convertors ; SRAM chips ; Video codecs ; Video coding ; Video compression ; Voltage</subject><ispartof>IEEE journal of solid-state circuits, 2009-11, Vol.44 (11), p.2943-2956</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-339f19d3600e8774a52276c7e589d9b42bac36efd9ebf576bfe21dab34eb3d33</citedby><cites>FETCH-LOGICAL-c462t-339f19d3600e8774a52276c7e589d9b42bac36efd9ebf576bfe21dab34eb3d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5308724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5308724$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22492607$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sze, V.</creatorcontrib><creatorcontrib>Finchelstein, D.F.</creatorcontrib><creatorcontrib>Sinangil, M.E.</creatorcontrib><creatorcontrib>Chandrakasan, A.P.</creatorcontrib><title>A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>The H.264/AVC video coding standard can deliver high compression efficiency at a cost of increased complexity and power. The increasing popularity of video capture and playback on portable devices requires that the power of the video codec be kept to a minimum. This work implements several architecture optimizations such as increased parallelism, pipelining with FIFOs, multiple voltage/frequency domains, and custom voltage-scalable SRAMs that enable low voltage operation to reduce the power of a high-definition decoder. Dynamic voltage and frequency scaling can efficiently adapt to the varying workloads by leveraging the low voltage capabilities and domain partitioning of the decoder. An H.264/AVC Baseline Level 3.2 decoder ASIC was fabricated in 65-nm CMOS and verified. For high definition 720p video decoding at 30 frames per second (fps), it operates down to 0.7 V with a measured power of 1.8 mW, which is significantly lower than previously published results. The highly scalable decoder is capable of operating down to 0.5 V for decoding QCIF at 15 fps with a measured power of 29 muW.</description><subject>Applied sciences</subject><subject>Automatic voltage control</subject><subject>cache memories</subject><subject>Circuit properties</subject><subject>CMOS digital integrated circuits</subject><subject>CMOS memory circuits</subject><subject>Coding standards</subject><subject>Costs</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Dynamic voltage scaling</subject><subject>Electric potential</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>H.264/AVC</subject><subject>High definition</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Low voltage</subject><subject>low-power electronics</subject><subject>Partitioning</subject><subject>Pipeline processing</subject><subject>Power measurement</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal convertors</subject><subject>SRAM chips</subject><subject>Video codecs</subject><subject>Video coding</subject><subject>Video compression</subject><subject>Voltage</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0ctKw0AUBuBBFKyXBxA3QVAESTpzzlyXpV6qFFy0VHfDJDmBlLapGbvw7U1pceFC3MwwzHd-OPyMXQieCcFd_2UyGWbAuesOsA7xgPWEUjYVBt8PWY9zYVPXgWN2EuO8e0ppRY_dDRKemXSWiMymy7dklIGW_cFsmBjg62RWl9Qk91Q0JbVn7KgKi0jn-_uUTR8fpsNROn59eh4OxmkhNXymiK4SrkTNOVljZFAARheGlHWlyyXkoUBNVekor5TReUUgypCjpBxLxFN2s4tdt83HhuKnX9axoMUirKjZRI8anOOCd_D2TyhQK6G0Ufp_FCVa6OjVLzpvNu2qW9g7YQCcdds8sUNF28TYUuXXbb0M7ZcX3G8L8dtC_LYQvy-km7neB4dYhEXVhlVRx59BAOlAc9O5y52riejnWyG3BiR-A9EWjIQ</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Sze, V.</creator><creator>Finchelstein, D.F.</creator><creator>Sinangil, M.E.</creator><creator>Chandrakasan, A.P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20091101</creationdate><title>A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder</title><author>Sze, V. ; Finchelstein, D.F. ; Sinangil, M.E. ; Chandrakasan, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-339f19d3600e8774a52276c7e589d9b42bac36efd9ebf576bfe21dab34eb3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Automatic voltage control</topic><topic>cache memories</topic><topic>Circuit properties</topic><topic>CMOS digital integrated circuits</topic><topic>CMOS memory circuits</topic><topic>Coding standards</topic><topic>Costs</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Dynamic voltage scaling</topic><topic>Electric potential</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>H.264/AVC</topic><topic>High definition</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Low voltage</topic><topic>low-power electronics</topic><topic>Partitioning</topic><topic>Pipeline processing</topic><topic>Power measurement</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal convertors</topic><topic>SRAM chips</topic><topic>Video codecs</topic><topic>Video coding</topic><topic>Video compression</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sze, V.</creatorcontrib><creatorcontrib>Finchelstein, D.F.</creatorcontrib><creatorcontrib>Sinangil, M.E.</creatorcontrib><creatorcontrib>Chandrakasan, A.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sze, V.</au><au>Finchelstein, D.F.</au><au>Sinangil, M.E.</au><au>Chandrakasan, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>44</volume><issue>11</issue><spage>2943</spage><epage>2956</epage><pages>2943-2956</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>The H.264/AVC video coding standard can deliver high compression efficiency at a cost of increased complexity and power. The increasing popularity of video capture and playback on portable devices requires that the power of the video codec be kept to a minimum. This work implements several architecture optimizations such as increased parallelism, pipelining with FIFOs, multiple voltage/frequency domains, and custom voltage-scalable SRAMs that enable low voltage operation to reduce the power of a high-definition decoder. Dynamic voltage and frequency scaling can efficiently adapt to the varying workloads by leveraging the low voltage capabilities and domain partitioning of the decoder. An H.264/AVC Baseline Level 3.2 decoder ASIC was fabricated in 65-nm CMOS and verified. For high definition 720p video decoding at 30 frames per second (fps), it operates down to 0.7 V with a measured power of 1.8 mW, which is significantly lower than previously published results. The highly scalable decoder is capable of operating down to 0.5 V for decoding QCIF at 15 fps with a measured power of 29 muW.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2009.2028933</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2009-11, Vol.44 (11), p.2943-2956
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_miscellaneous_1365156756
source IEEE Electronic Library (IEL)
subjects Applied sciences
Automatic voltage control
cache memories
Circuit properties
CMOS digital integrated circuits
CMOS memory circuits
Coding standards
Costs
Decoders
Decoding
Design. Technologies. Operation analysis. Testing
Devices
Dynamic voltage scaling
Electric potential
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
H.264/AVC
High definition
Integrated circuits
Integrated circuits by function (including memories and processors)
Low voltage
low-power electronics
Partitioning
Pipeline processing
Power measurement
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Signal convertors
SRAM chips
Video codecs
Video coding
Video compression
Voltage
title A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%200.7-V%201.8-mW%20H.264/AVC%20720p%20Video%20Decoder&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Sze,%20V.&rft.date=2009-11-01&rft.volume=44&rft.issue=11&rft.spage=2943&rft.epage=2956&rft.pages=2943-2956&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2009.2028933&rft_dat=%3Cproquest_RIE%3E2567655161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917229896&rft_id=info:pmid/&rft_ieee_id=5308724&rfr_iscdi=true