Study of CMOS Process Variation by Multiplexing Analog Characteristics

Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2008-11, Vol.21 (4), p.513-525
Hauptverfasser: Gettings, K., Boning, D.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 525
container_issue 4
container_start_page 513
container_title IEEE transactions on semiconductor manufacturing
container_volume 21
creator Gettings, K.
Boning, D.S.
description Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this paper we address this need by contributing a test circuit methodology for the extraction of spatial, layout and size dependent variations at both device and interconnect levels. The test chip uses a scan chain approach combined with low-leakage and low-variation switches, and Kelvin sensing connections, providing access to detailed analog device characteristics in large arrays of test devices. Variation measurement using the designed test chip has proven successful for both device and interconnect test structures. The parameter extraction and variation analyses made possible by the variation test chip enable the identification of likely variation sources, quantification of circuit impact and sensitivity, and specification of layout practices for variation minimization.
doi_str_mv 10.1109/TSM.2008.2004320
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365156327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4657430</ieee_id><sourcerecordid>34474900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7a8380f01338ef55a547ff7868db98eadea969009d6fe7de20db780d5742d7c63</originalsourceid><addsrcrecordid>eNp90UtLAzEQB_AgCtbqXfCyCD4uq5N39liKL2hRqHpd0mxSI-tuTXbBfntTWnrw4CVzyG9mYP4InWK4wRiK29fZ9IYAqPXDKIE9NMCcq5xQxvfRAFTBcsFBHqKjGD8BMGOFHKD7WddXq6x12Xj6PMteQmtsjNm7Dl53vm2y-Sqb9nXnl7X98c0iGzW6bhfZ-EMHbTobfOy8icfowOk62pNtHaK3-7vX8WM-eX54Go8muWFcdbnUiipwgClV1nGuOZPOSSVUNS-U1ZXVhSgAiko4KytLoJpLBRWXjFTSCDpEV5u5y9B-9zZ25ZePxta1bmzbx7IAKpjAgiR5-a-kjEmWViV4_S_EVHDMBSUy0fM_9LPtQzpIWowJkZIxlRBskAltjMG6chn8lw6rEkO5jqpMUZXrqMptVKnlYjtXR6NrF3RjfNz1EUgHEgQnd7Zx3lq7-2YinYcC_QVWeJos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912277448</pqid></control><display><type>article</type><title>Study of CMOS Process Variation by Multiplexing Analog Characteristics</title><source>IEEE Electronic Library (IEL)</source><creator>Gettings, K. ; Boning, D.S.</creator><creatorcontrib>Gettings, K. ; Boning, D.S.</creatorcontrib><description>Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this paper we address this need by contributing a test circuit methodology for the extraction of spatial, layout and size dependent variations at both device and interconnect levels. The test chip uses a scan chain approach combined with low-leakage and low-variation switches, and Kelvin sensing connections, providing access to detailed analog device characteristics in large arrays of test devices. Variation measurement using the designed test chip has proven successful for both device and interconnect test structures. The parameter extraction and variation analyses made possible by the variation test chip enable the identification of likely variation sources, quantification of circuit impact and sensitivity, and specification of layout practices for variation minimization.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2008.2004320</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Chips ; Circuit optimization ; Circuit properties ; Circuit testing ; Circuits ; CMOS process ; CMOS technology ; Design for manufacturability ; Design. Technologies. Operation analysis. Testing ; Devices ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Extraction ; Integrated circuit interconnections ; Integrated circuits ; Interconnections ; Kelvin ; Mathematical models ; Microelectronic fabrication (materials and surfaces technology) ; Parasitic capacitance ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; statistical metrology ; statistical modeling ; Switches ; Switching, multiplexing, switched capacity circuits ; Testing, measurement, noise and reliability ; Threshold voltage ; variation</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2008-11, Vol.21 (4), p.513-525</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7a8380f01338ef55a547ff7868db98eadea969009d6fe7de20db780d5742d7c63</citedby><cites>FETCH-LOGICAL-c458t-7a8380f01338ef55a547ff7868db98eadea969009d6fe7de20db780d5742d7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4657430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4657430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20868621$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gettings, K.</creatorcontrib><creatorcontrib>Boning, D.S.</creatorcontrib><title>Study of CMOS Process Variation by Multiplexing Analog Characteristics</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this paper we address this need by contributing a test circuit methodology for the extraction of spatial, layout and size dependent variations at both device and interconnect levels. The test chip uses a scan chain approach combined with low-leakage and low-variation switches, and Kelvin sensing connections, providing access to detailed analog device characteristics in large arrays of test devices. Variation measurement using the designed test chip has proven successful for both device and interconnect test structures. The parameter extraction and variation analyses made possible by the variation test chip enable the identification of likely variation sources, quantification of circuit impact and sensitivity, and specification of layout practices for variation minimization.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Chips</subject><subject>Circuit optimization</subject><subject>Circuit properties</subject><subject>Circuit testing</subject><subject>Circuits</subject><subject>CMOS process</subject><subject>CMOS technology</subject><subject>Design for manufacturability</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Interconnections</subject><subject>Kelvin</subject><subject>Mathematical models</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Parasitic capacitance</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>statistical metrology</subject><subject>statistical modeling</subject><subject>Switches</subject><subject>Switching, multiplexing, switched capacity circuits</subject><subject>Testing, measurement, noise and reliability</subject><subject>Threshold voltage</subject><subject>variation</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90UtLAzEQB_AgCtbqXfCyCD4uq5N39liKL2hRqHpd0mxSI-tuTXbBfntTWnrw4CVzyG9mYP4InWK4wRiK29fZ9IYAqPXDKIE9NMCcq5xQxvfRAFTBcsFBHqKjGD8BMGOFHKD7WddXq6x12Xj6PMteQmtsjNm7Dl53vm2y-Sqb9nXnl7X98c0iGzW6bhfZ-EMHbTobfOy8icfowOk62pNtHaK3-7vX8WM-eX54Go8muWFcdbnUiipwgClV1nGuOZPOSSVUNS-U1ZXVhSgAiko4KytLoJpLBRWXjFTSCDpEV5u5y9B-9zZ25ZePxta1bmzbx7IAKpjAgiR5-a-kjEmWViV4_S_EVHDMBSUy0fM_9LPtQzpIWowJkZIxlRBskAltjMG6chn8lw6rEkO5jqpMUZXrqMptVKnlYjtXR6NrF3RjfNz1EUgHEgQnd7Zx3lq7-2YinYcC_QVWeJos</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Gettings, K.</creator><creator>Boning, D.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Study of CMOS Process Variation by Multiplexing Analog Characteristics</title><author>Gettings, K. ; Boning, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7a8380f01338ef55a547ff7868db98eadea969009d6fe7de20db780d5742d7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Chips</topic><topic>Circuit optimization</topic><topic>Circuit properties</topic><topic>Circuit testing</topic><topic>Circuits</topic><topic>CMOS process</topic><topic>CMOS technology</topic><topic>Design for manufacturability</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Interconnections</topic><topic>Kelvin</topic><topic>Mathematical models</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Parasitic capacitance</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>statistical metrology</topic><topic>statistical modeling</topic><topic>Switches</topic><topic>Switching, multiplexing, switched capacity circuits</topic><topic>Testing, measurement, noise and reliability</topic><topic>Threshold voltage</topic><topic>variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gettings, K.</creatorcontrib><creatorcontrib>Boning, D.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gettings, K.</au><au>Boning, D.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of CMOS Process Variation by Multiplexing Analog Characteristics</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>21</volume><issue>4</issue><spage>513</spage><epage>525</epage><pages>513-525</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this paper we address this need by contributing a test circuit methodology for the extraction of spatial, layout and size dependent variations at both device and interconnect levels. The test chip uses a scan chain approach combined with low-leakage and low-variation switches, and Kelvin sensing connections, providing access to detailed analog device characteristics in large arrays of test devices. Variation measurement using the designed test chip has proven successful for both device and interconnect test structures. The parameter extraction and variation analyses made possible by the variation test chip enable the identification of likely variation sources, quantification of circuit impact and sensitivity, and specification of layout practices for variation minimization.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSM.2008.2004320</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2008-11, Vol.21 (4), p.513-525
issn 0894-6507
1558-2345
language eng
recordid cdi_proquest_miscellaneous_1365156327
source IEEE Electronic Library (IEL)
subjects Applied sciences
Arrays
Chips
Circuit optimization
Circuit properties
Circuit testing
Circuits
CMOS process
CMOS technology
Design for manufacturability
Design. Technologies. Operation analysis. Testing
Devices
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Extraction
Integrated circuit interconnections
Integrated circuits
Interconnections
Kelvin
Mathematical models
Microelectronic fabrication (materials and surfaces technology)
Parasitic capacitance
Semiconductor device modeling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
statistical metrology
statistical modeling
Switches
Switching, multiplexing, switched capacity circuits
Testing, measurement, noise and reliability
Threshold voltage
variation
title Study of CMOS Process Variation by Multiplexing Analog Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20CMOS%20Process%20Variation%20by%20Multiplexing%20Analog%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Gettings,%20K.&rft.date=2008-11-01&rft.volume=21&rft.issue=4&rft.spage=513&rft.epage=525&rft.pages=513-525&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2008.2004320&rft_dat=%3Cproquest_RIE%3E34474900%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912277448&rft_id=info:pmid/&rft_ieee_id=4657430&rfr_iscdi=true