Study of CMOS Process Variation by Multiplexing Analog Characteristics
Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this pa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on semiconductor manufacturing 2008-11, Vol.21 (4), p.513-525 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 4 |
container_start_page | 513 |
container_title | IEEE transactions on semiconductor manufacturing |
container_volume | 21 |
creator | Gettings, K. Boning, D.S. |
description | Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this paper we address this need by contributing a test circuit methodology for the extraction of spatial, layout and size dependent variations at both device and interconnect levels. The test chip uses a scan chain approach combined with low-leakage and low-variation switches, and Kelvin sensing connections, providing access to detailed analog device characteristics in large arrays of test devices. Variation measurement using the designed test chip has proven successful for both device and interconnect test structures. The parameter extraction and variation analyses made possible by the variation test chip enable the identification of likely variation sources, quantification of circuit impact and sensitivity, and specification of layout practices for variation minimization. |
doi_str_mv | 10.1109/TSM.2008.2004320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365156327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4657430</ieee_id><sourcerecordid>34474900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7a8380f01338ef55a547ff7868db98eadea969009d6fe7de20db780d5742d7c63</originalsourceid><addsrcrecordid>eNp90UtLAzEQB_AgCtbqXfCyCD4uq5N39liKL2hRqHpd0mxSI-tuTXbBfntTWnrw4CVzyG9mYP4InWK4wRiK29fZ9IYAqPXDKIE9NMCcq5xQxvfRAFTBcsFBHqKjGD8BMGOFHKD7WddXq6x12Xj6PMteQmtsjNm7Dl53vm2y-Sqb9nXnl7X98c0iGzW6bhfZ-EMHbTobfOy8icfowOk62pNtHaK3-7vX8WM-eX54Go8muWFcdbnUiipwgClV1nGuOZPOSSVUNS-U1ZXVhSgAiko4KytLoJpLBRWXjFTSCDpEV5u5y9B-9zZ25ZePxta1bmzbx7IAKpjAgiR5-a-kjEmWViV4_S_EVHDMBSUy0fM_9LPtQzpIWowJkZIxlRBskAltjMG6chn8lw6rEkO5jqpMUZXrqMptVKnlYjtXR6NrF3RjfNz1EUgHEgQnd7Zx3lq7-2YinYcC_QVWeJos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912277448</pqid></control><display><type>article</type><title>Study of CMOS Process Variation by Multiplexing Analog Characteristics</title><source>IEEE Electronic Library (IEL)</source><creator>Gettings, K. ; Boning, D.S.</creator><creatorcontrib>Gettings, K. ; Boning, D.S.</creatorcontrib><description>Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this paper we address this need by contributing a test circuit methodology for the extraction of spatial, layout and size dependent variations at both device and interconnect levels. The test chip uses a scan chain approach combined with low-leakage and low-variation switches, and Kelvin sensing connections, providing access to detailed analog device characteristics in large arrays of test devices. Variation measurement using the designed test chip has proven successful for both device and interconnect test structures. The parameter extraction and variation analyses made possible by the variation test chip enable the identification of likely variation sources, quantification of circuit impact and sensitivity, and specification of layout practices for variation minimization.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2008.2004320</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Chips ; Circuit optimization ; Circuit properties ; Circuit testing ; Circuits ; CMOS process ; CMOS technology ; Design for manufacturability ; Design. Technologies. Operation analysis. Testing ; Devices ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Extraction ; Integrated circuit interconnections ; Integrated circuits ; Interconnections ; Kelvin ; Mathematical models ; Microelectronic fabrication (materials and surfaces technology) ; Parasitic capacitance ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; statistical metrology ; statistical modeling ; Switches ; Switching, multiplexing, switched capacity circuits ; Testing, measurement, noise and reliability ; Threshold voltage ; variation</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2008-11, Vol.21 (4), p.513-525</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7a8380f01338ef55a547ff7868db98eadea969009d6fe7de20db780d5742d7c63</citedby><cites>FETCH-LOGICAL-c458t-7a8380f01338ef55a547ff7868db98eadea969009d6fe7de20db780d5742d7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4657430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4657430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20868621$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gettings, K.</creatorcontrib><creatorcontrib>Boning, D.S.</creatorcontrib><title>Study of CMOS Process Variation by Multiplexing Analog Characteristics</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this paper we address this need by contributing a test circuit methodology for the extraction of spatial, layout and size dependent variations at both device and interconnect levels. The test chip uses a scan chain approach combined with low-leakage and low-variation switches, and Kelvin sensing connections, providing access to detailed analog device characteristics in large arrays of test devices. Variation measurement using the designed test chip has proven successful for both device and interconnect test structures. The parameter extraction and variation analyses made possible by the variation test chip enable the identification of likely variation sources, quantification of circuit impact and sensitivity, and specification of layout practices for variation minimization.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Chips</subject><subject>Circuit optimization</subject><subject>Circuit properties</subject><subject>Circuit testing</subject><subject>Circuits</subject><subject>CMOS process</subject><subject>CMOS technology</subject><subject>Design for manufacturability</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Interconnections</subject><subject>Kelvin</subject><subject>Mathematical models</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Parasitic capacitance</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>statistical metrology</subject><subject>statistical modeling</subject><subject>Switches</subject><subject>Switching, multiplexing, switched capacity circuits</subject><subject>Testing, measurement, noise and reliability</subject><subject>Threshold voltage</subject><subject>variation</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90UtLAzEQB_AgCtbqXfCyCD4uq5N39liKL2hRqHpd0mxSI-tuTXbBfntTWnrw4CVzyG9mYP4InWK4wRiK29fZ9IYAqPXDKIE9NMCcq5xQxvfRAFTBcsFBHqKjGD8BMGOFHKD7WddXq6x12Xj6PMteQmtsjNm7Dl53vm2y-Sqb9nXnl7X98c0iGzW6bhfZ-EMHbTobfOy8icfowOk62pNtHaK3-7vX8WM-eX54Go8muWFcdbnUiipwgClV1nGuOZPOSSVUNS-U1ZXVhSgAiko4KytLoJpLBRWXjFTSCDpEV5u5y9B-9zZ25ZePxta1bmzbx7IAKpjAgiR5-a-kjEmWViV4_S_EVHDMBSUy0fM_9LPtQzpIWowJkZIxlRBskAltjMG6chn8lw6rEkO5jqpMUZXrqMptVKnlYjtXR6NrF3RjfNz1EUgHEgQnd7Zx3lq7-2YinYcC_QVWeJos</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Gettings, K.</creator><creator>Boning, D.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Study of CMOS Process Variation by Multiplexing Analog Characteristics</title><author>Gettings, K. ; Boning, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7a8380f01338ef55a547ff7868db98eadea969009d6fe7de20db780d5742d7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Chips</topic><topic>Circuit optimization</topic><topic>Circuit properties</topic><topic>Circuit testing</topic><topic>Circuits</topic><topic>CMOS process</topic><topic>CMOS technology</topic><topic>Design for manufacturability</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Interconnections</topic><topic>Kelvin</topic><topic>Mathematical models</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Parasitic capacitance</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>statistical metrology</topic><topic>statistical modeling</topic><topic>Switches</topic><topic>Switching, multiplexing, switched capacity circuits</topic><topic>Testing, measurement, noise and reliability</topic><topic>Threshold voltage</topic><topic>variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gettings, K.</creatorcontrib><creatorcontrib>Boning, D.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gettings, K.</au><au>Boning, D.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of CMOS Process Variation by Multiplexing Analog Characteristics</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>21</volume><issue>4</issue><spage>513</spage><epage>525</epage><pages>513-525</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Aggressive technology scaling raises the need for efficient methods to characterize and model circuit variation at both the front and back end of line, where critical parameters such as threshold voltage and parasitic capacitance must be carefully modeled for accurate circuit performance. In this paper we address this need by contributing a test circuit methodology for the extraction of spatial, layout and size dependent variations at both device and interconnect levels. The test chip uses a scan chain approach combined with low-leakage and low-variation switches, and Kelvin sensing connections, providing access to detailed analog device characteristics in large arrays of test devices. Variation measurement using the designed test chip has proven successful for both device and interconnect test structures. The parameter extraction and variation analyses made possible by the variation test chip enable the identification of likely variation sources, quantification of circuit impact and sensitivity, and specification of layout practices for variation minimization.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSM.2008.2004320</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0894-6507 |
ispartof | IEEE transactions on semiconductor manufacturing, 2008-11, Vol.21 (4), p.513-525 |
issn | 0894-6507 1558-2345 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365156327 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Arrays Chips Circuit optimization Circuit properties Circuit testing Circuits CMOS process CMOS technology Design for manufacturability Design. Technologies. Operation analysis. Testing Devices Electric, optical and optoelectronic circuits Electronic circuits Electronics Exact sciences and technology Extraction Integrated circuit interconnections Integrated circuits Interconnections Kelvin Mathematical models Microelectronic fabrication (materials and surfaces technology) Parasitic capacitance Semiconductor device modeling Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors statistical metrology statistical modeling Switches Switching, multiplexing, switched capacity circuits Testing, measurement, noise and reliability Threshold voltage variation |
title | Study of CMOS Process Variation by Multiplexing Analog Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20CMOS%20Process%20Variation%20by%20Multiplexing%20Analog%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Gettings,%20K.&rft.date=2008-11-01&rft.volume=21&rft.issue=4&rft.spage=513&rft.epage=525&rft.pages=513-525&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2008.2004320&rft_dat=%3Cproquest_RIE%3E34474900%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912277448&rft_id=info:pmid/&rft_ieee_id=4657430&rfr_iscdi=true |