High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems

This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2006-09, Vol.53 (9), p.911-915
Hauptverfasser: Lin, C.-H., Wu, A.-Y., Li, F.-M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 915
container_issue 9
container_start_page 911
container_title IEEE transactions on circuits and systems. 2, Analog and digital signal processing
container_volume 53
creator Lin, C.-H.
Wu, A.-Y.
Li, F.-M.
description This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Winters (1991) reformulated the FBF as a (M) L -to-1 multiplexer. Due to the reformulation, the overhead of extra adders and extra multiplexers are as large as (M) L . The required hardware overhead should be more severe when the DFE is implemented in parallel. In this brief, we propose two new approaches to implement the DFE when gigabit throughput rate is desired. The first approach is partial pre-computation scheme, which can trade-off between hardware complexity and computational speed. The second approach is two-stage pre-computation scheme, which can be applied to higher speed applications. In the later case, we can reduce the hardware overhead to about 2(M) (-L/2) times of [1], [2], and the iteration bound is (log 2 W+2)/(L/2+1)+(log 2 M) multiplexer-delays, where W is the wordlength of weight coefficient of a FBF. We demonstrate the proposed architectures by apply it to the 10 Gbase-LX4 optical communication systems
doi_str_mv 10.1109/TCSII.2006.881165
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365155845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1705065</ieee_id><sourcerecordid>2544178261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-354588982381340256ee16ea1735f63803827a4549f86a81ad45f2e636d631dd3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsnryk7uxmN5tjqf0IFBTael22yaTd2jR1NznUX29iBcHTDMzzDi9PENwDHQDQ5Hk5WqTpgFEqB0oBSHER9EAIFfI4gctuj5IwjqP4OrjxfkcpSyhnvWA1s5tt-IauqFxpDhmS9_kiJUOXbW2NWd04JFVBXjCz3lYHMkHM1yb7IOPPxuztFzrSJsnUbsza1mRx8jWW_ja4Ksze493v7AeryXg5moXz12k6Gs7DjEtVh1xEQqlEMa6AR5QJiQgSDcRcFJIryhWLTdRWL5Q0CkweiYKh5DKXHPKc94On89-jqz4b9LUurc9wvzcHrBqvgUvRWYhEiz7-Q3dV4w5tO50AA55wYC0EZyhzlfcOC310tjTupIHqzrP-8aw7z_rsuc08nDMWEf_4mAraXr8B8212zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912139312</pqid></control><display><type>article</type><title>High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems</title><source>IEL</source><creator>Lin, C.-H. ; Wu, A.-Y. ; Li, F.-M.</creator><creatorcontrib>Lin, C.-H. ; Wu, A.-Y. ; Li, F.-M.</creatorcontrib><description>This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Winters (1991) reformulated the FBF as a (M) L -to-1 multiplexer. Due to the reformulation, the overhead of extra adders and extra multiplexers are as large as (M) L . The required hardware overhead should be more severe when the DFE is implemented in parallel. In this brief, we propose two new approaches to implement the DFE when gigabit throughput rate is desired. The first approach is partial pre-computation scheme, which can trade-off between hardware complexity and computational speed. The second approach is two-stage pre-computation scheme, which can be applied to higher speed applications. In the later case, we can reduce the hardware overhead to about 2(M) (-L/2) times of [1], [2], and the iteration bound is (log 2 W+2)/(L/2+1)+(log 2 M) multiplexer-delays, where W is the wordlength of weight coefficient of a FBF. We demonstrate the proposed architectures by apply it to the 10 Gbase-LX4 optical communication systems</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2006.881165</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitude modulation ; Architecture ; Coefficients ; Decision feedback equalizer (DFE) ; Decision feedback equalizers ; Equalizers ; Feedback ; Feedback loop ; Filters ; gigabit system ; Hardware ; Multiplexing ; Optical fiber communication ; partial pre-computation scheme ; Studies ; Throughput ; two-stage pre-computation scheme ; Upper bound ; Very large scale integration ; Weight reduction</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2006-09, Vol.53 (9), p.911-915</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-354588982381340256ee16ea1735f63803827a4549f86a81ad45f2e636d631dd3</citedby><cites>FETCH-LOGICAL-c368t-354588982381340256ee16ea1735f63803827a4549f86a81ad45f2e636d631dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1705065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1705065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, C.-H.</creatorcontrib><creatorcontrib>Wu, A.-Y.</creatorcontrib><creatorcontrib>Li, F.-M.</creatorcontrib><title>High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>TCSII</addtitle><description>This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Winters (1991) reformulated the FBF as a (M) L -to-1 multiplexer. Due to the reformulation, the overhead of extra adders and extra multiplexers are as large as (M) L . The required hardware overhead should be more severe when the DFE is implemented in parallel. In this brief, we propose two new approaches to implement the DFE when gigabit throughput rate is desired. The first approach is partial pre-computation scheme, which can trade-off between hardware complexity and computational speed. The second approach is two-stage pre-computation scheme, which can be applied to higher speed applications. In the later case, we can reduce the hardware overhead to about 2(M) (-L/2) times of [1], [2], and the iteration bound is (log 2 W+2)/(L/2+1)+(log 2 M) multiplexer-delays, where W is the wordlength of weight coefficient of a FBF. We demonstrate the proposed architectures by apply it to the 10 Gbase-LX4 optical communication systems</description><subject>Amplitude modulation</subject><subject>Architecture</subject><subject>Coefficients</subject><subject>Decision feedback equalizer (DFE)</subject><subject>Decision feedback equalizers</subject><subject>Equalizers</subject><subject>Feedback</subject><subject>Feedback loop</subject><subject>Filters</subject><subject>gigabit system</subject><subject>Hardware</subject><subject>Multiplexing</subject><subject>Optical fiber communication</subject><subject>partial pre-computation scheme</subject><subject>Studies</subject><subject>Throughput</subject><subject>two-stage pre-computation scheme</subject><subject>Upper bound</subject><subject>Very large scale integration</subject><subject>Weight reduction</subject><issn>1549-7747</issn><issn>1057-7130</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsnryk7uxmN5tjqf0IFBTael22yaTd2jR1NznUX29iBcHTDMzzDi9PENwDHQDQ5Hk5WqTpgFEqB0oBSHER9EAIFfI4gctuj5IwjqP4OrjxfkcpSyhnvWA1s5tt-IauqFxpDhmS9_kiJUOXbW2NWd04JFVBXjCz3lYHMkHM1yb7IOPPxuztFzrSJsnUbsza1mRx8jWW_ja4Ksze493v7AeryXg5moXz12k6Gs7DjEtVh1xEQqlEMa6AR5QJiQgSDcRcFJIryhWLTdRWL5Q0CkweiYKh5DKXHPKc94On89-jqz4b9LUurc9wvzcHrBqvgUvRWYhEiz7-Q3dV4w5tO50AA55wYC0EZyhzlfcOC310tjTupIHqzrP-8aw7z_rsuc08nDMWEf_4mAraXr8B8212zA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Lin, C.-H.</creator><creator>Wu, A.-Y.</creator><creator>Li, F.-M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems</title><author>Lin, C.-H. ; Wu, A.-Y. ; Li, F.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-354588982381340256ee16ea1735f63803827a4549f86a81ad45f2e636d631dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amplitude modulation</topic><topic>Architecture</topic><topic>Coefficients</topic><topic>Decision feedback equalizer (DFE)</topic><topic>Decision feedback equalizers</topic><topic>Equalizers</topic><topic>Feedback</topic><topic>Feedback loop</topic><topic>Filters</topic><topic>gigabit system</topic><topic>Hardware</topic><topic>Multiplexing</topic><topic>Optical fiber communication</topic><topic>partial pre-computation scheme</topic><topic>Studies</topic><topic>Throughput</topic><topic>two-stage pre-computation scheme</topic><topic>Upper bound</topic><topic>Very large scale integration</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, C.-H.</creatorcontrib><creatorcontrib>Wu, A.-Y.</creatorcontrib><creatorcontrib>Li, F.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, C.-H.</au><au>Wu, A.-Y.</au><au>Li, F.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>TCSII</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>53</volume><issue>9</issue><spage>911</spage><epage>915</epage><pages>911-915</pages><issn>1549-7747</issn><issn>1057-7130</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Winters (1991) reformulated the FBF as a (M) L -to-1 multiplexer. Due to the reformulation, the overhead of extra adders and extra multiplexers are as large as (M) L . The required hardware overhead should be more severe when the DFE is implemented in parallel. In this brief, we propose two new approaches to implement the DFE when gigabit throughput rate is desired. The first approach is partial pre-computation scheme, which can trade-off between hardware complexity and computational speed. The second approach is two-stage pre-computation scheme, which can be applied to higher speed applications. In the later case, we can reduce the hardware overhead to about 2(M) (-L/2) times of [1], [2], and the iteration bound is (log 2 W+2)/(L/2+1)+(log 2 M) multiplexer-delays, where W is the wordlength of weight coefficient of a FBF. We demonstrate the proposed architectures by apply it to the 10 Gbase-LX4 optical communication systems</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2006.881165</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2006-09, Vol.53 (9), p.911-915
issn 1549-7747
1057-7130
1558-3791
language eng
recordid cdi_proquest_miscellaneous_1365155845
source IEL
subjects Amplitude modulation
Architecture
Coefficients
Decision feedback equalizer (DFE)
Decision feedback equalizers
Equalizers
Feedback
Feedback loop
Filters
gigabit system
Hardware
Multiplexing
Optical fiber communication
partial pre-computation scheme
Studies
Throughput
two-stage pre-computation scheme
Upper bound
Very large scale integration
Weight reduction
title High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20VLSI%20Architecture%20of%20Decision%20Feedback%20Equalizer%20for%20Gigabit%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Lin,%20C.-H.&rft.date=2006-09-01&rft.volume=53&rft.issue=9&rft.spage=911&rft.epage=915&rft.pages=911-915&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2006.881165&rft_dat=%3Cproquest_RIE%3E2544178261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912139312&rft_id=info:pmid/&rft_ieee_id=1705065&rfr_iscdi=true