High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems
This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Wi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2006-09, Vol.53 (9), p.911-915 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 915 |
---|---|
container_issue | 9 |
container_start_page | 911 |
container_title | IEEE transactions on circuits and systems. 2, Analog and digital signal processing |
container_volume | 53 |
creator | Lin, C.-H. Wu, A.-Y. Li, F.-M. |
description | This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Winters (1991) reformulated the FBF as a (M) L -to-1 multiplexer. Due to the reformulation, the overhead of extra adders and extra multiplexers are as large as (M) L . The required hardware overhead should be more severe when the DFE is implemented in parallel. In this brief, we propose two new approaches to implement the DFE when gigabit throughput rate is desired. The first approach is partial pre-computation scheme, which can trade-off between hardware complexity and computational speed. The second approach is two-stage pre-computation scheme, which can be applied to higher speed applications. In the later case, we can reduce the hardware overhead to about 2(M) (-L/2) times of [1], [2], and the iteration bound is (log 2 W+2)/(L/2+1)+(log 2 M) multiplexer-delays, where W is the wordlength of weight coefficient of a FBF. We demonstrate the proposed architectures by apply it to the 10 Gbase-LX4 optical communication systems |
doi_str_mv | 10.1109/TCSII.2006.881165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365155845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1705065</ieee_id><sourcerecordid>2544178261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-354588982381340256ee16ea1735f63803827a4549f86a81ad45f2e636d631dd3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsnryk7uxmN5tjqf0IFBTael22yaTd2jR1NznUX29iBcHTDMzzDi9PENwDHQDQ5Hk5WqTpgFEqB0oBSHER9EAIFfI4gctuj5IwjqP4OrjxfkcpSyhnvWA1s5tt-IauqFxpDhmS9_kiJUOXbW2NWd04JFVBXjCz3lYHMkHM1yb7IOPPxuztFzrSJsnUbsza1mRx8jWW_ja4Ksze493v7AeryXg5moXz12k6Gs7DjEtVh1xEQqlEMa6AR5QJiQgSDcRcFJIryhWLTdRWL5Q0CkweiYKh5DKXHPKc94On89-jqz4b9LUurc9wvzcHrBqvgUvRWYhEiz7-Q3dV4w5tO50AA55wYC0EZyhzlfcOC310tjTupIHqzrP-8aw7z_rsuc08nDMWEf_4mAraXr8B8212zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912139312</pqid></control><display><type>article</type><title>High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems</title><source>IEL</source><creator>Lin, C.-H. ; Wu, A.-Y. ; Li, F.-M.</creator><creatorcontrib>Lin, C.-H. ; Wu, A.-Y. ; Li, F.-M.</creatorcontrib><description>This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Winters (1991) reformulated the FBF as a (M) L -to-1 multiplexer. Due to the reformulation, the overhead of extra adders and extra multiplexers are as large as (M) L . The required hardware overhead should be more severe when the DFE is implemented in parallel. In this brief, we propose two new approaches to implement the DFE when gigabit throughput rate is desired. The first approach is partial pre-computation scheme, which can trade-off between hardware complexity and computational speed. The second approach is two-stage pre-computation scheme, which can be applied to higher speed applications. In the later case, we can reduce the hardware overhead to about 2(M) (-L/2) times of [1], [2], and the iteration bound is (log 2 W+2)/(L/2+1)+(log 2 M) multiplexer-delays, where W is the wordlength of weight coefficient of a FBF. We demonstrate the proposed architectures by apply it to the 10 Gbase-LX4 optical communication systems</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1057-7130</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2006.881165</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitude modulation ; Architecture ; Coefficients ; Decision feedback equalizer (DFE) ; Decision feedback equalizers ; Equalizers ; Feedback ; Feedback loop ; Filters ; gigabit system ; Hardware ; Multiplexing ; Optical fiber communication ; partial pre-computation scheme ; Studies ; Throughput ; two-stage pre-computation scheme ; Upper bound ; Very large scale integration ; Weight reduction</subject><ispartof>IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2006-09, Vol.53 (9), p.911-915</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-354588982381340256ee16ea1735f63803827a4549f86a81ad45f2e636d631dd3</citedby><cites>FETCH-LOGICAL-c368t-354588982381340256ee16ea1735f63803827a4549f86a81ad45f2e636d631dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1705065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1705065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, C.-H.</creatorcontrib><creatorcontrib>Wu, A.-Y.</creatorcontrib><creatorcontrib>Li, F.-M.</creatorcontrib><title>High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems</title><title>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</title><addtitle>TCSII</addtitle><description>This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Winters (1991) reformulated the FBF as a (M) L -to-1 multiplexer. Due to the reformulation, the overhead of extra adders and extra multiplexers are as large as (M) L . The required hardware overhead should be more severe when the DFE is implemented in parallel. In this brief, we propose two new approaches to implement the DFE when gigabit throughput rate is desired. The first approach is partial pre-computation scheme, which can trade-off between hardware complexity and computational speed. The second approach is two-stage pre-computation scheme, which can be applied to higher speed applications. In the later case, we can reduce the hardware overhead to about 2(M) (-L/2) times of [1], [2], and the iteration bound is (log 2 W+2)/(L/2+1)+(log 2 M) multiplexer-delays, where W is the wordlength of weight coefficient of a FBF. We demonstrate the proposed architectures by apply it to the 10 Gbase-LX4 optical communication systems</description><subject>Amplitude modulation</subject><subject>Architecture</subject><subject>Coefficients</subject><subject>Decision feedback equalizer (DFE)</subject><subject>Decision feedback equalizers</subject><subject>Equalizers</subject><subject>Feedback</subject><subject>Feedback loop</subject><subject>Filters</subject><subject>gigabit system</subject><subject>Hardware</subject><subject>Multiplexing</subject><subject>Optical fiber communication</subject><subject>partial pre-computation scheme</subject><subject>Studies</subject><subject>Throughput</subject><subject>two-stage pre-computation scheme</subject><subject>Upper bound</subject><subject>Very large scale integration</subject><subject>Weight reduction</subject><issn>1549-7747</issn><issn>1057-7130</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsnryk7uxmN5tjqf0IFBTael22yaTd2jR1NznUX29iBcHTDMzzDi9PENwDHQDQ5Hk5WqTpgFEqB0oBSHER9EAIFfI4gctuj5IwjqP4OrjxfkcpSyhnvWA1s5tt-IauqFxpDhmS9_kiJUOXbW2NWd04JFVBXjCz3lYHMkHM1yb7IOPPxuztFzrSJsnUbsza1mRx8jWW_ja4Ksze493v7AeryXg5moXz12k6Gs7DjEtVh1xEQqlEMa6AR5QJiQgSDcRcFJIryhWLTdRWL5Q0CkweiYKh5DKXHPKc94On89-jqz4b9LUurc9wvzcHrBqvgUvRWYhEiz7-Q3dV4w5tO50AA55wYC0EZyhzlfcOC310tjTupIHqzrP-8aw7z_rsuc08nDMWEf_4mAraXr8B8212zA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Lin, C.-H.</creator><creator>Wu, A.-Y.</creator><creator>Li, F.-M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060901</creationdate><title>High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems</title><author>Lin, C.-H. ; Wu, A.-Y. ; Li, F.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-354588982381340256ee16ea1735f63803827a4549f86a81ad45f2e636d631dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amplitude modulation</topic><topic>Architecture</topic><topic>Coefficients</topic><topic>Decision feedback equalizer (DFE)</topic><topic>Decision feedback equalizers</topic><topic>Equalizers</topic><topic>Feedback</topic><topic>Feedback loop</topic><topic>Filters</topic><topic>gigabit system</topic><topic>Hardware</topic><topic>Multiplexing</topic><topic>Optical fiber communication</topic><topic>partial pre-computation scheme</topic><topic>Studies</topic><topic>Throughput</topic><topic>two-stage pre-computation scheme</topic><topic>Upper bound</topic><topic>Very large scale integration</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, C.-H.</creatorcontrib><creatorcontrib>Wu, A.-Y.</creatorcontrib><creatorcontrib>Li, F.-M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, C.-H.</au><au>Wu, A.-Y.</au><au>Li, F.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems</atitle><jtitle>IEEE transactions on circuits and systems. 2, Analog and digital signal processing</jtitle><stitle>TCSII</stitle><date>2006-09-01</date><risdate>2006</risdate><volume>53</volume><issue>9</issue><spage>911</spage><epage>915</epage><pages>911-915</pages><issn>1549-7747</issn><issn>1057-7130</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This brief addresses the design of a decision feedback equalizer (DFE) for gigabit throughput rate. It is well known that the feedback loop in a DFE limits an upper bound of the achievable speed. For a L-tap feedbackward filter (FBF) and M-pulse amplitude modulation, Parhi (1991) and Kasturia and Winters (1991) reformulated the FBF as a (M) L -to-1 multiplexer. Due to the reformulation, the overhead of extra adders and extra multiplexers are as large as (M) L . The required hardware overhead should be more severe when the DFE is implemented in parallel. In this brief, we propose two new approaches to implement the DFE when gigabit throughput rate is desired. The first approach is partial pre-computation scheme, which can trade-off between hardware complexity and computational speed. The second approach is two-stage pre-computation scheme, which can be applied to higher speed applications. In the later case, we can reduce the hardware overhead to about 2(M) (-L/2) times of [1], [2], and the iteration bound is (log 2 W+2)/(L/2+1)+(log 2 M) multiplexer-delays, where W is the wordlength of weight coefficient of a FBF. We demonstrate the proposed architectures by apply it to the 10 Gbase-LX4 optical communication systems</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2006.881165</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. 2, Analog and digital signal processing, 2006-09, Vol.53 (9), p.911-915 |
issn | 1549-7747 1057-7130 1558-3791 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365155845 |
source | IEL |
subjects | Amplitude modulation Architecture Coefficients Decision feedback equalizer (DFE) Decision feedback equalizers Equalizers Feedback Feedback loop Filters gigabit system Hardware Multiplexing Optical fiber communication partial pre-computation scheme Studies Throughput two-stage pre-computation scheme Upper bound Very large scale integration Weight reduction |
title | High-Performance VLSI Architecture of Decision Feedback Equalizer for Gigabit Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20VLSI%20Architecture%20of%20Decision%20Feedback%20Equalizer%20for%20Gigabit%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%202,%20Analog%20and%20digital%20signal%20processing&rft.au=Lin,%20C.-H.&rft.date=2006-09-01&rft.volume=53&rft.issue=9&rft.spage=911&rft.epage=915&rft.pages=911-915&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2006.881165&rft_dat=%3Cproquest_RIE%3E2544178261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912139312&rft_id=info:pmid/&rft_ieee_id=1705065&rfr_iscdi=true |