Plane waves in noncommutative fluids

We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2013-08, Vol.377 (18), p.1227-1232
Hauptverfasser: Abdalla, M.C.B., Holender, L., Santos, M.A., Vancea, I.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1232
container_issue 18
container_start_page 1227
container_title Physics letters. A
container_volume 377
creator Abdalla, M.C.B.
Holender, L.
Santos, M.A.
Vancea, I.V.
description We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy–momentum tensor of the plane waves is calculated. •We obtain the dynamics of the noncommutative fluid in the Snyder space at the first order in the power expansion in terms of the noncommutative parameter.•We solve the corresponding linearized equations of motion and show that the solutions are monochromatic waves with simple geometric interpretation.•We calculate the energy–momentum tensor of these solutions.
doi_str_mv 10.1016/j.physleta.2013.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365154781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375960113002569</els_id><sourcerecordid>1365154781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-cc40477202df36f48078eab99885dfaa717a436096549fc56b880a9ae6f4b4443</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKv_guzBg5ddJ5tsPm5KsSoU9KDnkGZnMWU_arJb6X9vSvUsPJjL772ZeYRcUygoUHG3Kbaf-9jiaIsSKCsgCdQJmVElWV7yUp-SGTBZ5VoAPScXMW4AkhP0jNy8tbbH7NvuMGa-z_qhd0PXTaMd_Q6zpp18HS_JWWPbiFe_c04-lo_vi-d89fr0snhY5Y5pNubOceBSllDWDRMNVyAV2rXWSlV1Y62k0nKW1oqK68ZVYq0UWG0xsWvOOZuT22PuNgxfE8bRdD46bA8nDlM0lImKVlwqmlBxRF0YYgzYmG3wnQ17Q8EcajEb81eLOdRiIAlUMt4fjZge2XkMJjqPvcPaB3SjqQf_X8QPcUNtww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365154781</pqid></control><display><type>article</type><title>Plane waves in noncommutative fluids</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Abdalla, M.C.B. ; Holender, L. ; Santos, M.A. ; Vancea, I.V.</creator><creatorcontrib>Abdalla, M.C.B. ; Holender, L. ; Santos, M.A. ; Vancea, I.V.</creatorcontrib><description>We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy–momentum tensor of the plane waves is calculated. •We obtain the dynamics of the noncommutative fluid in the Snyder space at the first order in the power expansion in terms of the noncommutative parameter.•We solve the corresponding linearized equations of motion and show that the solutions are monochromatic waves with simple geometric interpretation.•We calculate the energy–momentum tensor of these solutions.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2013.03.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Density ; Dynamics ; Fluid dynamics ; Fluid flow ; Fluids ; Mathematical analysis ; Plane waves ; Solid state physics</subject><ispartof>Physics letters. A, 2013-08, Vol.377 (18), p.1227-1232</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-cc40477202df36f48078eab99885dfaa717a436096549fc56b880a9ae6f4b4443</citedby><cites>FETCH-LOGICAL-c393t-cc40477202df36f48078eab99885dfaa717a436096549fc56b880a9ae6f4b4443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2013.03.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Abdalla, M.C.B.</creatorcontrib><creatorcontrib>Holender, L.</creatorcontrib><creatorcontrib>Santos, M.A.</creatorcontrib><creatorcontrib>Vancea, I.V.</creatorcontrib><title>Plane waves in noncommutative fluids</title><title>Physics letters. A</title><description>We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy–momentum tensor of the plane waves is calculated. •We obtain the dynamics of the noncommutative fluid in the Snyder space at the first order in the power expansion in terms of the noncommutative parameter.•We solve the corresponding linearized equations of motion and show that the solutions are monochromatic waves with simple geometric interpretation.•We calculate the energy–momentum tensor of these solutions.</description><subject>Density</subject><subject>Dynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Mathematical analysis</subject><subject>Plane waves</subject><subject>Solid state physics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKv_guzBg5ddJ5tsPm5KsSoU9KDnkGZnMWU_arJb6X9vSvUsPJjL772ZeYRcUygoUHG3Kbaf-9jiaIsSKCsgCdQJmVElWV7yUp-SGTBZ5VoAPScXMW4AkhP0jNy8tbbH7NvuMGa-z_qhd0PXTaMd_Q6zpp18HS_JWWPbiFe_c04-lo_vi-d89fr0snhY5Y5pNubOceBSllDWDRMNVyAV2rXWSlV1Y62k0nKW1oqK68ZVYq0UWG0xsWvOOZuT22PuNgxfE8bRdD46bA8nDlM0lImKVlwqmlBxRF0YYgzYmG3wnQ17Q8EcajEb81eLOdRiIAlUMt4fjZge2XkMJjqPvcPaB3SjqQf_X8QPcUNtww</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Abdalla, M.C.B.</creator><creator>Holender, L.</creator><creator>Santos, M.A.</creator><creator>Vancea, I.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Plane waves in noncommutative fluids</title><author>Abdalla, M.C.B. ; Holender, L. ; Santos, M.A. ; Vancea, I.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-cc40477202df36f48078eab99885dfaa717a436096549fc56b880a9ae6f4b4443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Density</topic><topic>Dynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Mathematical analysis</topic><topic>Plane waves</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdalla, M.C.B.</creatorcontrib><creatorcontrib>Holender, L.</creatorcontrib><creatorcontrib>Santos, M.A.</creatorcontrib><creatorcontrib>Vancea, I.V.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdalla, M.C.B.</au><au>Holender, L.</au><au>Santos, M.A.</au><au>Vancea, I.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plane waves in noncommutative fluids</atitle><jtitle>Physics letters. A</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>377</volume><issue>18</issue><spage>1227</spage><epage>1232</epage><pages>1227-1232</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy–momentum tensor of the plane waves is calculated. •We obtain the dynamics of the noncommutative fluid in the Snyder space at the first order in the power expansion in terms of the noncommutative parameter.•We solve the corresponding linearized equations of motion and show that the solutions are monochromatic waves with simple geometric interpretation.•We calculate the energy–momentum tensor of these solutions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2013.03.008</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-9601
ispartof Physics letters. A, 2013-08, Vol.377 (18), p.1227-1232
issn 0375-9601
1873-2429
language eng
recordid cdi_proquest_miscellaneous_1365154781
source Elsevier ScienceDirect Journals Complete
subjects Density
Dynamics
Fluid dynamics
Fluid flow
Fluids
Mathematical analysis
Plane waves
Solid state physics
title Plane waves in noncommutative fluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plane%20waves%20in%20noncommutative%20fluids&rft.jtitle=Physics%20letters.%20A&rft.au=Abdalla,%20M.C.B.&rft.date=2013-08-01&rft.volume=377&rft.issue=18&rft.spage=1227&rft.epage=1232&rft.pages=1227-1232&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2013.03.008&rft_dat=%3Cproquest_cross%3E1365154781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365154781&rft_id=info:pmid/&rft_els_id=S0375960113002569&rfr_iscdi=true