Photoelectron spin-flipping and texture manipulation in a topological insulator

In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2013-05, Vol.9 (5), p.293-298
Hauptverfasser: Jozwiak, Chris, Park, Cheol-Hwan, Gotlieb, Kenneth, Hwang, Choongyu, Lee, Dung-Hai, Louie, Steven G., Denlinger, Jonathan D., Rotundu, Costel R., Birgeneau, Robert J., Hussain, Zahid, Lanzara, Alessandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 5
container_start_page 293
container_title Nature physics
container_volume 9
creator Jozwiak, Chris
Park, Cheol-Hwan
Gotlieb, Kenneth
Hwang, Choongyu
Lee, Dung-Hai
Louie, Steven G.
Denlinger, Jonathan D.
Rotundu, Costel R.
Birgeneau, Robert J.
Hussain, Zahid
Lanzara, Alessandra
description In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons. Recently discovered materials called three-dimensional topological insulators 1 , 2 , 3 , 4 , 5 constitute examples of symmetry-protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is their protected metallic Dirac fermion-like surface states. Electrons in these surface states are spin polarized with their spins governed by their momentum, resulting in a helical spin texture in momentum space 6 . Spin- and angle-resolved photoemission spectroscopy has been the only tool capable of directly observing this central feature with simultaneous energy, momentum and spin sensitivity 6 , 7 , 8 , 9 , 10 , 11 , 12 . By using an innovative photoelectron spectrometer 13 with a high-flux laser-based light source, we discovered a surprising property of these surface electrons. We found that the spin polarization of the resulting photoelectrons can be manipulated in three dimensions through selection of the light polarization. These effects are due to the spin-dependent interaction of the helical surface electrons with light, which originates from strong spin–orbit coupling. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from that of the originating initial states. The results also provide the basis for a source of highly spin-polarized electrons with tunable polarization direction.
doi_str_mv 10.1038/nphys2572
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365144708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2960958021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-5a1e3c4515b5d8ab63345f3d685785128f4618e4155917d4c8f2710cd5a89d293</originalsourceid><addsrcrecordid>eNpl0N9LwzAQB_AgCs7pg_9BwRcVqrkmadNHGf6CwXzQ55Kl6ZaRJTVJwf33ZlSG6NOFy4e744vQJeA7wITf2369CwWriiM0gYqyvKAcjg_vipyisxA2GNOiBDJBi7e1i04ZJaN3Ngu9tnlndJ_qKhO2zaL6ioNX2VZY3Q9GRJ2YtpnIouudcSsthUmNsP9z_hyddMIEdfFTp-jj6fF99pLPF8-vs4d5LtPimDMBikjKgC1Zy8WyJISyjrQlZxVnUPCOlsAVBcZqqFoqeVdUgGXLBK_boiZTdD3O7b37HFSIzVYHqYwRVrkhNEBKBpRWmCd69Ydu3OBtui6plA7BtMZJ3YxKeheCV13Te70VftcAbvbRNodok70dbUjGrpT_NfEf_gbY-Xq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348130490</pqid></control><display><type>article</type><title>Photoelectron spin-flipping and texture manipulation in a topological insulator</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Jozwiak, Chris ; Park, Cheol-Hwan ; Gotlieb, Kenneth ; Hwang, Choongyu ; Lee, Dung-Hai ; Louie, Steven G. ; Denlinger, Jonathan D. ; Rotundu, Costel R. ; Birgeneau, Robert J. ; Hussain, Zahid ; Lanzara, Alessandra</creator><creatorcontrib>Jozwiak, Chris ; Park, Cheol-Hwan ; Gotlieb, Kenneth ; Hwang, Choongyu ; Lee, Dung-Hai ; Louie, Steven G. ; Denlinger, Jonathan D. ; Rotundu, Costel R. ; Birgeneau, Robert J. ; Hussain, Zahid ; Lanzara, Alessandra</creatorcontrib><description>In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons. Recently discovered materials called three-dimensional topological insulators 1 , 2 , 3 , 4 , 5 constitute examples of symmetry-protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is their protected metallic Dirac fermion-like surface states. Electrons in these surface states are spin polarized with their spins governed by their momentum, resulting in a helical spin texture in momentum space 6 . Spin- and angle-resolved photoemission spectroscopy has been the only tool capable of directly observing this central feature with simultaneous energy, momentum and spin sensitivity 6 , 7 , 8 , 9 , 10 , 11 , 12 . By using an innovative photoelectron spectrometer 13 with a high-flux laser-based light source, we discovered a surprising property of these surface electrons. We found that the spin polarization of the resulting photoelectrons can be manipulated in three dimensions through selection of the light polarization. These effects are due to the spin-dependent interaction of the helical surface electrons with light, which originates from strong spin–orbit coupling. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from that of the originating initial states. The results also provide the basis for a source of highly spin-polarized electrons with tunable polarization direction.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2572</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1001 ; 639/766/119/995 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Electrons ; Helical ; Insulation ; Insulators ; letter ; Light sources ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Photoelectrons ; Physics ; Polarization ; Spectroscopy ; Spinning ; Surface layer ; Texture ; Theoretical ; Three dimensional ; Topology</subject><ispartof>Nature physics, 2013-05, Vol.9 (5), p.293-298</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-5a1e3c4515b5d8ab63345f3d685785128f4618e4155917d4c8f2710cd5a89d293</citedby><cites>FETCH-LOGICAL-c426t-5a1e3c4515b5d8ab63345f3d685785128f4618e4155917d4c8f2710cd5a89d293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2572$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2572$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Park, Cheol-Hwan</creatorcontrib><creatorcontrib>Gotlieb, Kenneth</creatorcontrib><creatorcontrib>Hwang, Choongyu</creatorcontrib><creatorcontrib>Lee, Dung-Hai</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Denlinger, Jonathan D.</creatorcontrib><creatorcontrib>Rotundu, Costel R.</creatorcontrib><creatorcontrib>Birgeneau, Robert J.</creatorcontrib><creatorcontrib>Hussain, Zahid</creatorcontrib><creatorcontrib>Lanzara, Alessandra</creatorcontrib><title>Photoelectron spin-flipping and texture manipulation in a topological insulator</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons. Recently discovered materials called three-dimensional topological insulators 1 , 2 , 3 , 4 , 5 constitute examples of symmetry-protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is their protected metallic Dirac fermion-like surface states. Electrons in these surface states are spin polarized with their spins governed by their momentum, resulting in a helical spin texture in momentum space 6 . Spin- and angle-resolved photoemission spectroscopy has been the only tool capable of directly observing this central feature with simultaneous energy, momentum and spin sensitivity 6 , 7 , 8 , 9 , 10 , 11 , 12 . By using an innovative photoelectron spectrometer 13 with a high-flux laser-based light source, we discovered a surprising property of these surface electrons. We found that the spin polarization of the resulting photoelectrons can be manipulated in three dimensions through selection of the light polarization. These effects are due to the spin-dependent interaction of the helical surface electrons with light, which originates from strong spin–orbit coupling. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from that of the originating initial states. The results also provide the basis for a source of highly spin-polarized electrons with tunable polarization direction.</description><subject>639/766/119/1001</subject><subject>639/766/119/995</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electrons</subject><subject>Helical</subject><subject>Insulation</subject><subject>Insulators</subject><subject>letter</subject><subject>Light sources</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Polarization</subject><subject>Spectroscopy</subject><subject>Spinning</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Theoretical</subject><subject>Three dimensional</subject><subject>Topology</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0N9LwzAQB_AgCs7pg_9BwRcVqrkmadNHGf6CwXzQ55Kl6ZaRJTVJwf33ZlSG6NOFy4e744vQJeA7wITf2369CwWriiM0gYqyvKAcjg_vipyisxA2GNOiBDJBi7e1i04ZJaN3Ngu9tnlndJ_qKhO2zaL6ioNX2VZY3Q9GRJ2YtpnIouudcSsthUmNsP9z_hyddMIEdfFTp-jj6fF99pLPF8-vs4d5LtPimDMBikjKgC1Zy8WyJISyjrQlZxVnUPCOlsAVBcZqqFoqeVdUgGXLBK_boiZTdD3O7b37HFSIzVYHqYwRVrkhNEBKBpRWmCd69Ydu3OBtui6plA7BtMZJ3YxKeheCV13Te70VftcAbvbRNodok70dbUjGrpT_NfEf_gbY-Xq3</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Jozwiak, Chris</creator><creator>Park, Cheol-Hwan</creator><creator>Gotlieb, Kenneth</creator><creator>Hwang, Choongyu</creator><creator>Lee, Dung-Hai</creator><creator>Louie, Steven G.</creator><creator>Denlinger, Jonathan D.</creator><creator>Rotundu, Costel R.</creator><creator>Birgeneau, Robert J.</creator><creator>Hussain, Zahid</creator><creator>Lanzara, Alessandra</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130501</creationdate><title>Photoelectron spin-flipping and texture manipulation in a topological insulator</title><author>Jozwiak, Chris ; Park, Cheol-Hwan ; Gotlieb, Kenneth ; Hwang, Choongyu ; Lee, Dung-Hai ; Louie, Steven G. ; Denlinger, Jonathan D. ; Rotundu, Costel R. ; Birgeneau, Robert J. ; Hussain, Zahid ; Lanzara, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-5a1e3c4515b5d8ab63345f3d685785128f4618e4155917d4c8f2710cd5a89d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/119/1001</topic><topic>639/766/119/995</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electrons</topic><topic>Helical</topic><topic>Insulation</topic><topic>Insulators</topic><topic>letter</topic><topic>Light sources</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Polarization</topic><topic>Spectroscopy</topic><topic>Spinning</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Theoretical</topic><topic>Three dimensional</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Park, Cheol-Hwan</creatorcontrib><creatorcontrib>Gotlieb, Kenneth</creatorcontrib><creatorcontrib>Hwang, Choongyu</creatorcontrib><creatorcontrib>Lee, Dung-Hai</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Denlinger, Jonathan D.</creatorcontrib><creatorcontrib>Rotundu, Costel R.</creatorcontrib><creatorcontrib>Birgeneau, Robert J.</creatorcontrib><creatorcontrib>Hussain, Zahid</creatorcontrib><creatorcontrib>Lanzara, Alessandra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jozwiak, Chris</au><au>Park, Cheol-Hwan</au><au>Gotlieb, Kenneth</au><au>Hwang, Choongyu</au><au>Lee, Dung-Hai</au><au>Louie, Steven G.</au><au>Denlinger, Jonathan D.</au><au>Rotundu, Costel R.</au><au>Birgeneau, Robert J.</au><au>Hussain, Zahid</au><au>Lanzara, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectron spin-flipping and texture manipulation in a topological insulator</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>9</volume><issue>5</issue><spage>293</spage><epage>298</epage><pages>293-298</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons. Recently discovered materials called three-dimensional topological insulators 1 , 2 , 3 , 4 , 5 constitute examples of symmetry-protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is their protected metallic Dirac fermion-like surface states. Electrons in these surface states are spin polarized with their spins governed by their momentum, resulting in a helical spin texture in momentum space 6 . Spin- and angle-resolved photoemission spectroscopy has been the only tool capable of directly observing this central feature with simultaneous energy, momentum and spin sensitivity 6 , 7 , 8 , 9 , 10 , 11 , 12 . By using an innovative photoelectron spectrometer 13 with a high-flux laser-based light source, we discovered a surprising property of these surface electrons. We found that the spin polarization of the resulting photoelectrons can be manipulated in three dimensions through selection of the light polarization. These effects are due to the spin-dependent interaction of the helical surface electrons with light, which originates from strong spin–orbit coupling. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from that of the originating initial states. The results also provide the basis for a source of highly spin-polarized electrons with tunable polarization direction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2572</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2013-05, Vol.9 (5), p.293-298
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1365144708
source Nature; Springer Nature - Complete Springer Journals
subjects 639/766/119/1001
639/766/119/995
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Electrons
Helical
Insulation
Insulators
letter
Light sources
Magnetic fields
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Photoelectrons
Physics
Polarization
Spectroscopy
Spinning
Surface layer
Texture
Theoretical
Three dimensional
Topology
title Photoelectron spin-flipping and texture manipulation in a topological insulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectron%20spin-flipping%20and%20texture%20manipulation%20in%20a%20topological%20insulator&rft.jtitle=Nature%20physics&rft.au=Jozwiak,%20Chris&rft.date=2013-05-01&rft.volume=9&rft.issue=5&rft.spage=293&rft.epage=298&rft.pages=293-298&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2572&rft_dat=%3Cproquest_cross%3E2960958021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348130490&rft_id=info:pmid/&rfr_iscdi=true