Photoelectron spin-flipping and texture manipulation in a topological insulator
In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in thr...
Gespeichert in:
Veröffentlicht in: | Nature physics 2013-05, Vol.9 (5), p.293-298 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 5 |
container_start_page | 293 |
container_title | Nature physics |
container_volume | 9 |
creator | Jozwiak, Chris Park, Cheol-Hwan Gotlieb, Kenneth Hwang, Choongyu Lee, Dung-Hai Louie, Steven G. Denlinger, Jonathan D. Rotundu, Costel R. Birgeneau, Robert J. Hussain, Zahid Lanzara, Alessandra |
description | In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons.
Recently discovered materials called three-dimensional topological insulators
1
,
2
,
3
,
4
,
5
constitute examples of symmetry-protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is their protected metallic Dirac fermion-like surface states. Electrons in these surface states are spin polarized with their spins governed by their momentum, resulting in a helical spin texture in momentum space
6
. Spin- and angle-resolved photoemission spectroscopy has been the only tool capable of directly observing this central feature with simultaneous energy, momentum and spin sensitivity
6
,
7
,
8
,
9
,
10
,
11
,
12
. By using an innovative photoelectron spectrometer
13
with a high-flux laser-based light source, we discovered a surprising property of these surface electrons. We found that the spin polarization of the resulting photoelectrons can be manipulated in three dimensions through selection of the light polarization. These effects are due to the spin-dependent interaction of the helical surface electrons with light, which originates from strong spin–orbit coupling. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from that of the originating initial states. The results also provide the basis for a source of highly spin-polarized electrons with tunable polarization direction. |
doi_str_mv | 10.1038/nphys2572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365144708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2960958021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-5a1e3c4515b5d8ab63345f3d685785128f4618e4155917d4c8f2710cd5a89d293</originalsourceid><addsrcrecordid>eNpl0N9LwzAQB_AgCs7pg_9BwRcVqrkmadNHGf6CwXzQ55Kl6ZaRJTVJwf33ZlSG6NOFy4e744vQJeA7wITf2369CwWriiM0gYqyvKAcjg_vipyisxA2GNOiBDJBi7e1i04ZJaN3Ngu9tnlndJ_qKhO2zaL6ioNX2VZY3Q9GRJ2YtpnIouudcSsthUmNsP9z_hyddMIEdfFTp-jj6fF99pLPF8-vs4d5LtPimDMBikjKgC1Zy8WyJISyjrQlZxVnUPCOlsAVBcZqqFoqeVdUgGXLBK_boiZTdD3O7b37HFSIzVYHqYwRVrkhNEBKBpRWmCd69Ydu3OBtui6plA7BtMZJ3YxKeheCV13Te70VftcAbvbRNodok70dbUjGrpT_NfEf_gbY-Xq3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348130490</pqid></control><display><type>article</type><title>Photoelectron spin-flipping and texture manipulation in a topological insulator</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Jozwiak, Chris ; Park, Cheol-Hwan ; Gotlieb, Kenneth ; Hwang, Choongyu ; Lee, Dung-Hai ; Louie, Steven G. ; Denlinger, Jonathan D. ; Rotundu, Costel R. ; Birgeneau, Robert J. ; Hussain, Zahid ; Lanzara, Alessandra</creator><creatorcontrib>Jozwiak, Chris ; Park, Cheol-Hwan ; Gotlieb, Kenneth ; Hwang, Choongyu ; Lee, Dung-Hai ; Louie, Steven G. ; Denlinger, Jonathan D. ; Rotundu, Costel R. ; Birgeneau, Robert J. ; Hussain, Zahid ; Lanzara, Alessandra</creatorcontrib><description>In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons.
Recently discovered materials called three-dimensional topological insulators
1
,
2
,
3
,
4
,
5
constitute examples of symmetry-protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is their protected metallic Dirac fermion-like surface states. Electrons in these surface states are spin polarized with their spins governed by their momentum, resulting in a helical spin texture in momentum space
6
. Spin- and angle-resolved photoemission spectroscopy has been the only tool capable of directly observing this central feature with simultaneous energy, momentum and spin sensitivity
6
,
7
,
8
,
9
,
10
,
11
,
12
. By using an innovative photoelectron spectrometer
13
with a high-flux laser-based light source, we discovered a surprising property of these surface electrons. We found that the spin polarization of the resulting photoelectrons can be manipulated in three dimensions through selection of the light polarization. These effects are due to the spin-dependent interaction of the helical surface electrons with light, which originates from strong spin–orbit coupling. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from that of the originating initial states. The results also provide the basis for a source of highly spin-polarized electrons with tunable polarization direction.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2572</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1001 ; 639/766/119/995 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Electrons ; Helical ; Insulation ; Insulators ; letter ; Light sources ; Magnetic fields ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Photoelectrons ; Physics ; Polarization ; Spectroscopy ; Spinning ; Surface layer ; Texture ; Theoretical ; Three dimensional ; Topology</subject><ispartof>Nature physics, 2013-05, Vol.9 (5), p.293-298</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-5a1e3c4515b5d8ab63345f3d685785128f4618e4155917d4c8f2710cd5a89d293</citedby><cites>FETCH-LOGICAL-c426t-5a1e3c4515b5d8ab63345f3d685785128f4618e4155917d4c8f2710cd5a89d293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys2572$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys2572$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Park, Cheol-Hwan</creatorcontrib><creatorcontrib>Gotlieb, Kenneth</creatorcontrib><creatorcontrib>Hwang, Choongyu</creatorcontrib><creatorcontrib>Lee, Dung-Hai</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Denlinger, Jonathan D.</creatorcontrib><creatorcontrib>Rotundu, Costel R.</creatorcontrib><creatorcontrib>Birgeneau, Robert J.</creatorcontrib><creatorcontrib>Hussain, Zahid</creatorcontrib><creatorcontrib>Lanzara, Alessandra</creatorcontrib><title>Photoelectron spin-flipping and texture manipulation in a topological insulator</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons.
Recently discovered materials called three-dimensional topological insulators
1
,
2
,
3
,
4
,
5
constitute examples of symmetry-protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is their protected metallic Dirac fermion-like surface states. Electrons in these surface states are spin polarized with their spins governed by their momentum, resulting in a helical spin texture in momentum space
6
. Spin- and angle-resolved photoemission spectroscopy has been the only tool capable of directly observing this central feature with simultaneous energy, momentum and spin sensitivity
6
,
7
,
8
,
9
,
10
,
11
,
12
. By using an innovative photoelectron spectrometer
13
with a high-flux laser-based light source, we discovered a surprising property of these surface electrons. We found that the spin polarization of the resulting photoelectrons can be manipulated in three dimensions through selection of the light polarization. These effects are due to the spin-dependent interaction of the helical surface electrons with light, which originates from strong spin–orbit coupling. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from that of the originating initial states. The results also provide the basis for a source of highly spin-polarized electrons with tunable polarization direction.</description><subject>639/766/119/1001</subject><subject>639/766/119/995</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electrons</subject><subject>Helical</subject><subject>Insulation</subject><subject>Insulators</subject><subject>letter</subject><subject>Light sources</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Polarization</subject><subject>Spectroscopy</subject><subject>Spinning</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Theoretical</subject><subject>Three dimensional</subject><subject>Topology</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0N9LwzAQB_AgCs7pg_9BwRcVqrkmadNHGf6CwXzQ55Kl6ZaRJTVJwf33ZlSG6NOFy4e744vQJeA7wITf2369CwWriiM0gYqyvKAcjg_vipyisxA2GNOiBDJBi7e1i04ZJaN3Ngu9tnlndJ_qKhO2zaL6ioNX2VZY3Q9GRJ2YtpnIouudcSsthUmNsP9z_hyddMIEdfFTp-jj6fF99pLPF8-vs4d5LtPimDMBikjKgC1Zy8WyJISyjrQlZxVnUPCOlsAVBcZqqFoqeVdUgGXLBK_boiZTdD3O7b37HFSIzVYHqYwRVrkhNEBKBpRWmCd69Ydu3OBtui6plA7BtMZJ3YxKeheCV13Te70VftcAbvbRNodok70dbUjGrpT_NfEf_gbY-Xq3</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Jozwiak, Chris</creator><creator>Park, Cheol-Hwan</creator><creator>Gotlieb, Kenneth</creator><creator>Hwang, Choongyu</creator><creator>Lee, Dung-Hai</creator><creator>Louie, Steven G.</creator><creator>Denlinger, Jonathan D.</creator><creator>Rotundu, Costel R.</creator><creator>Birgeneau, Robert J.</creator><creator>Hussain, Zahid</creator><creator>Lanzara, Alessandra</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130501</creationdate><title>Photoelectron spin-flipping and texture manipulation in a topological insulator</title><author>Jozwiak, Chris ; Park, Cheol-Hwan ; Gotlieb, Kenneth ; Hwang, Choongyu ; Lee, Dung-Hai ; Louie, Steven G. ; Denlinger, Jonathan D. ; Rotundu, Costel R. ; Birgeneau, Robert J. ; Hussain, Zahid ; Lanzara, Alessandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-5a1e3c4515b5d8ab63345f3d685785128f4618e4155917d4c8f2710cd5a89d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/766/119/1001</topic><topic>639/766/119/995</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electrons</topic><topic>Helical</topic><topic>Insulation</topic><topic>Insulators</topic><topic>letter</topic><topic>Light sources</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Polarization</topic><topic>Spectroscopy</topic><topic>Spinning</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Theoretical</topic><topic>Three dimensional</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Park, Cheol-Hwan</creatorcontrib><creatorcontrib>Gotlieb, Kenneth</creatorcontrib><creatorcontrib>Hwang, Choongyu</creatorcontrib><creatorcontrib>Lee, Dung-Hai</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Denlinger, Jonathan D.</creatorcontrib><creatorcontrib>Rotundu, Costel R.</creatorcontrib><creatorcontrib>Birgeneau, Robert J.</creatorcontrib><creatorcontrib>Hussain, Zahid</creatorcontrib><creatorcontrib>Lanzara, Alessandra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jozwiak, Chris</au><au>Park, Cheol-Hwan</au><au>Gotlieb, Kenneth</au><au>Hwang, Choongyu</au><au>Lee, Dung-Hai</au><au>Louie, Steven G.</au><au>Denlinger, Jonathan D.</au><au>Rotundu, Costel R.</au><au>Birgeneau, Robert J.</au><au>Hussain, Zahid</au><au>Lanzara, Alessandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectron spin-flipping and texture manipulation in a topological insulator</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>9</volume><issue>5</issue><spage>293</spage><epage>298</epage><pages>293-298</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>In a topological insulator, the surface-state electron spins are ‘locked’ to their direction of travel. But when an electron is kicked out by a photon through the photoelectric effect, the spin polarization is not necessarily conserved. In fact, the ejected spins can be completely manipulated in three dimensions by the incident photons.
Recently discovered materials called three-dimensional topological insulators
1
,
2
,
3
,
4
,
5
constitute examples of symmetry-protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is their protected metallic Dirac fermion-like surface states. Electrons in these surface states are spin polarized with their spins governed by their momentum, resulting in a helical spin texture in momentum space
6
. Spin- and angle-resolved photoemission spectroscopy has been the only tool capable of directly observing this central feature with simultaneous energy, momentum and spin sensitivity
6
,
7
,
8
,
9
,
10
,
11
,
12
. By using an innovative photoelectron spectrometer
13
with a high-flux laser-based light source, we discovered a surprising property of these surface electrons. We found that the spin polarization of the resulting photoelectrons can be manipulated in three dimensions through selection of the light polarization. These effects are due to the spin-dependent interaction of the helical surface electrons with light, which originates from strong spin–orbit coupling. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from that of the originating initial states. The results also provide the basis for a source of highly spin-polarized electrons with tunable polarization direction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2572</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2013-05, Vol.9 (5), p.293-298 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365144708 |
source | Nature; Springer Nature - Complete Springer Journals |
subjects | 639/766/119/1001 639/766/119/995 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Electrons Helical Insulation Insulators letter Light sources Magnetic fields Mathematical and Computational Physics Molecular Optical and Plasma Physics Photoelectrons Physics Polarization Spectroscopy Spinning Surface layer Texture Theoretical Three dimensional Topology |
title | Photoelectron spin-flipping and texture manipulation in a topological insulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectron%20spin-flipping%20and%20texture%20manipulation%20in%20a%20topological%20insulator&rft.jtitle=Nature%20physics&rft.au=Jozwiak,%20Chris&rft.date=2013-05-01&rft.volume=9&rft.issue=5&rft.spage=293&rft.epage=298&rft.pages=293-298&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2572&rft_dat=%3Cproquest_cross%3E2960958021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348130490&rft_id=info:pmid/&rfr_iscdi=true |