High-efficiency quantum-dot light-emitting devices with enhanced charge injection

We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2013-05, Vol.7 (5), p.407-412
Hauptverfasser: Mashford, Benjamin S., Stevenson, Matthew, Popovic, Zoran, Hamilton, Charles, Zhou, Zhaoqun, Breen, Craig, Steckel, Jonathan, Bulovic, Vladimir, Bawendi, Moungi, Coe-Sullivan, Seth, Kazlas, Peter T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 5
container_start_page 407
container_title Nature photonics
container_volume 7
creator Mashford, Benjamin S.
Stevenson, Matthew
Popovic, Zoran
Hamilton, Charles
Zhou, Zhaoqun
Breen, Craig
Steckel, Jonathan
Bulovic, Vladimir
Bawendi, Moungi
Coe-Sullivan, Seth
Kazlas, Peter T.
description We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the electron transport layer) facilitates charge transfer, which is responsible for both injecting electrons and maintaining an optimal charge balance for the quantum dot emitters. We show that QLED performance can be modified by controlling the distance of the electroluminescence recombination zone within the quantum dot film from the quantum dot–ZnO interface. Devices are reported with a luminous efficiency of 19 cd A −1 , corresponding to an external quantum efficiency of 18% (which is close to the theoretical maximum of 20%) and an internal quantum efficiency of 90%. The corresponding luminous power efficiency exceeds 25 lm W −1 due to the low operating voltage of the device. Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W −1 .
doi_str_mv 10.1038/nphoton.2013.70
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365143886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957793291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-137df101a5bede9e4a5d4f1e1f2079edbe9625dc75214bf99af30f561ac1b6e33</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKdnrwUvXrolTdM2RxnqhIEIeg5p8tJmdOmWpMr-ezs2RARP78H7fj8eH0K3BM8IptXcbds-9m6WYUJnJT5DE1LmPM0rTs9_9opdoqsQ1hgzyrNsgt6WtmlTMMYqC07tk90gXRw2qe5j0o23mMLGxmhdk2j4tApC8mVjm4BrpVOgE9VK30Bi3RpUtL27RhdGdgFuTnOKPp4e3xfLdPX6_LJ4WKWK5jSmhJbaEEwkq0EDh1wynRsCxGS45KBr4EXGtCpZRvLacC4NxYYVRCpSF0DpFN0fe7e-3w0QotjYoKDrpIN-CILQgpGcVlUxond_0HU_eDd-N1J5wTFnJRup-ZFSvg_BgxFbbzfS7wXB4qBYnBSLg2JR4jGBj4kwkq4B_6v3n8g3auqCRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346909575</pqid></control><display><type>article</type><title>High-efficiency quantum-dot light-emitting devices with enhanced charge injection</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Mashford, Benjamin S. ; Stevenson, Matthew ; Popovic, Zoran ; Hamilton, Charles ; Zhou, Zhaoqun ; Breen, Craig ; Steckel, Jonathan ; Bulovic, Vladimir ; Bawendi, Moungi ; Coe-Sullivan, Seth ; Kazlas, Peter T.</creator><creatorcontrib>Mashford, Benjamin S. ; Stevenson, Matthew ; Popovic, Zoran ; Hamilton, Charles ; Zhou, Zhaoqun ; Breen, Craig ; Steckel, Jonathan ; Bulovic, Vladimir ; Bawendi, Moungi ; Coe-Sullivan, Seth ; Kazlas, Peter T.</creatorcontrib><description>We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the electron transport layer) facilitates charge transfer, which is responsible for both injecting electrons and maintaining an optimal charge balance for the quantum dot emitters. We show that QLED performance can be modified by controlling the distance of the electroluminescence recombination zone within the quantum dot film from the quantum dot–ZnO interface. Devices are reported with a luminous efficiency of 19 cd A −1 , corresponding to an external quantum efficiency of 18% (which is close to the theoretical maximum of 20%) and an internal quantum efficiency of 90%. The corresponding luminous power efficiency exceeds 25 lm W −1 due to the low operating voltage of the device. Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W −1 .</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2013.70</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020 ; 639/624/399/1017 ; Applied and Technical Physics ; Charge ; Charge transfer ; Devices ; Electric potential ; Electronics ; Emitters ; Physics ; Quantum dots ; Quantum efficiency ; Quantum Physics</subject><ispartof>Nature photonics, 2013-05, Vol.7 (5), p.407-412</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-137df101a5bede9e4a5d4f1e1f2079edbe9625dc75214bf99af30f561ac1b6e33</citedby><cites>FETCH-LOGICAL-c343t-137df101a5bede9e4a5d4f1e1f2079edbe9625dc75214bf99af30f561ac1b6e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mashford, Benjamin S.</creatorcontrib><creatorcontrib>Stevenson, Matthew</creatorcontrib><creatorcontrib>Popovic, Zoran</creatorcontrib><creatorcontrib>Hamilton, Charles</creatorcontrib><creatorcontrib>Zhou, Zhaoqun</creatorcontrib><creatorcontrib>Breen, Craig</creatorcontrib><creatorcontrib>Steckel, Jonathan</creatorcontrib><creatorcontrib>Bulovic, Vladimir</creatorcontrib><creatorcontrib>Bawendi, Moungi</creatorcontrib><creatorcontrib>Coe-Sullivan, Seth</creatorcontrib><creatorcontrib>Kazlas, Peter T.</creatorcontrib><title>High-efficiency quantum-dot light-emitting devices with enhanced charge injection</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the electron transport layer) facilitates charge transfer, which is responsible for both injecting electrons and maintaining an optimal charge balance for the quantum dot emitters. We show that QLED performance can be modified by controlling the distance of the electroluminescence recombination zone within the quantum dot film from the quantum dot–ZnO interface. Devices are reported with a luminous efficiency of 19 cd A −1 , corresponding to an external quantum efficiency of 18% (which is close to the theoretical maximum of 20%) and an internal quantum efficiency of 90%. The corresponding luminous power efficiency exceeds 25 lm W −1 due to the low operating voltage of the device. Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W −1 .</description><subject>639/624/1020</subject><subject>639/624/399/1017</subject><subject>Applied and Technical Physics</subject><subject>Charge</subject><subject>Charge transfer</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Emitters</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quantum efficiency</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFLwzAUh4MoOKdnrwUvXrolTdM2RxnqhIEIeg5p8tJmdOmWpMr-ezs2RARP78H7fj8eH0K3BM8IptXcbds-9m6WYUJnJT5DE1LmPM0rTs9_9opdoqsQ1hgzyrNsgt6WtmlTMMYqC07tk90gXRw2qe5j0o23mMLGxmhdk2j4tApC8mVjm4BrpVOgE9VK30Bi3RpUtL27RhdGdgFuTnOKPp4e3xfLdPX6_LJ4WKWK5jSmhJbaEEwkq0EDh1wynRsCxGS45KBr4EXGtCpZRvLacC4NxYYVRCpSF0DpFN0fe7e-3w0QotjYoKDrpIN-CILQgpGcVlUxond_0HU_eDd-N1J5wTFnJRup-ZFSvg_BgxFbbzfS7wXB4qBYnBSLg2JR4jGBj4kwkq4B_6v3n8g3auqCRQ</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Mashford, Benjamin S.</creator><creator>Stevenson, Matthew</creator><creator>Popovic, Zoran</creator><creator>Hamilton, Charles</creator><creator>Zhou, Zhaoqun</creator><creator>Breen, Craig</creator><creator>Steckel, Jonathan</creator><creator>Bulovic, Vladimir</creator><creator>Bawendi, Moungi</creator><creator>Coe-Sullivan, Seth</creator><creator>Kazlas, Peter T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20130501</creationdate><title>High-efficiency quantum-dot light-emitting devices with enhanced charge injection</title><author>Mashford, Benjamin S. ; Stevenson, Matthew ; Popovic, Zoran ; Hamilton, Charles ; Zhou, Zhaoqun ; Breen, Craig ; Steckel, Jonathan ; Bulovic, Vladimir ; Bawendi, Moungi ; Coe-Sullivan, Seth ; Kazlas, Peter T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-137df101a5bede9e4a5d4f1e1f2079edbe9625dc75214bf99af30f561ac1b6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/624/1020</topic><topic>639/624/399/1017</topic><topic>Applied and Technical Physics</topic><topic>Charge</topic><topic>Charge transfer</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Emitters</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quantum efficiency</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashford, Benjamin S.</creatorcontrib><creatorcontrib>Stevenson, Matthew</creatorcontrib><creatorcontrib>Popovic, Zoran</creatorcontrib><creatorcontrib>Hamilton, Charles</creatorcontrib><creatorcontrib>Zhou, Zhaoqun</creatorcontrib><creatorcontrib>Breen, Craig</creatorcontrib><creatorcontrib>Steckel, Jonathan</creatorcontrib><creatorcontrib>Bulovic, Vladimir</creatorcontrib><creatorcontrib>Bawendi, Moungi</creatorcontrib><creatorcontrib>Coe-Sullivan, Seth</creatorcontrib><creatorcontrib>Kazlas, Peter T.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashford, Benjamin S.</au><au>Stevenson, Matthew</au><au>Popovic, Zoran</au><au>Hamilton, Charles</au><au>Zhou, Zhaoqun</au><au>Breen, Craig</au><au>Steckel, Jonathan</au><au>Bulovic, Vladimir</au><au>Bawendi, Moungi</au><au>Coe-Sullivan, Seth</au><au>Kazlas, Peter T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-efficiency quantum-dot light-emitting devices with enhanced charge injection</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>7</volume><issue>5</issue><spage>407</spage><epage>412</epage><pages>407-412</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the electron transport layer) facilitates charge transfer, which is responsible for both injecting electrons and maintaining an optimal charge balance for the quantum dot emitters. We show that QLED performance can be modified by controlling the distance of the electroluminescence recombination zone within the quantum dot film from the quantum dot–ZnO interface. Devices are reported with a luminous efficiency of 19 cd A −1 , corresponding to an external quantum efficiency of 18% (which is close to the theoretical maximum of 20%) and an internal quantum efficiency of 90%. The corresponding luminous power efficiency exceeds 25 lm W −1 due to the low operating voltage of the device. Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W −1 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2013.70</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2013-05, Vol.7 (5), p.407-412
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_miscellaneous_1365143886
source Nature; Alma/SFX Local Collection
subjects 639/624/1020
639/624/399/1017
Applied and Technical Physics
Charge
Charge transfer
Devices
Electric potential
Electronics
Emitters
Physics
Quantum dots
Quantum efficiency
Quantum Physics
title High-efficiency quantum-dot light-emitting devices with enhanced charge injection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-efficiency%20quantum-dot%20light-emitting%20devices%20with%20enhanced%20charge%20injection&rft.jtitle=Nature%20photonics&rft.au=Mashford,%20Benjamin%20S.&rft.date=2013-05-01&rft.volume=7&rft.issue=5&rft.spage=407&rft.epage=412&rft.pages=407-412&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2013.70&rft_dat=%3Cproquest_cross%3E2957793291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346909575&rft_id=info:pmid/&rfr_iscdi=true