High-efficiency quantum-dot light-emitting devices with enhanced charge injection
We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the ele...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2013-05, Vol.7 (5), p.407-412 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 5 |
container_start_page | 407 |
container_title | Nature photonics |
container_volume | 7 |
creator | Mashford, Benjamin S. Stevenson, Matthew Popovic, Zoran Hamilton, Charles Zhou, Zhaoqun Breen, Craig Steckel, Jonathan Bulovic, Vladimir Bawendi, Moungi Coe-Sullivan, Seth Kazlas, Peter T. |
description | We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the electron transport layer) facilitates charge transfer, which is responsible for both injecting electrons and maintaining an optimal charge balance for the quantum dot emitters. We show that QLED performance can be modified by controlling the distance of the electroluminescence recombination zone within the quantum dot film from the quantum dot–ZnO interface. Devices are reported with a luminous efficiency of 19 cd A
−1
, corresponding to an external quantum efficiency of 18% (which is close to the theoretical maximum of 20%) and an internal quantum efficiency of 90%. The corresponding luminous power efficiency exceeds 25 lm W
−1
due to the low operating voltage of the device.
Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W
−1
. |
doi_str_mv | 10.1038/nphoton.2013.70 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365143886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957793291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-137df101a5bede9e4a5d4f1e1f2079edbe9625dc75214bf99af30f561ac1b6e33</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKdnrwUvXrolTdM2RxnqhIEIeg5p8tJmdOmWpMr-ezs2RARP78H7fj8eH0K3BM8IptXcbds-9m6WYUJnJT5DE1LmPM0rTs9_9opdoqsQ1hgzyrNsgt6WtmlTMMYqC07tk90gXRw2qe5j0o23mMLGxmhdk2j4tApC8mVjm4BrpVOgE9VK30Bi3RpUtL27RhdGdgFuTnOKPp4e3xfLdPX6_LJ4WKWK5jSmhJbaEEwkq0EDh1wynRsCxGS45KBr4EXGtCpZRvLacC4NxYYVRCpSF0DpFN0fe7e-3w0QotjYoKDrpIN-CILQgpGcVlUxond_0HU_eDd-N1J5wTFnJRup-ZFSvg_BgxFbbzfS7wXB4qBYnBSLg2JR4jGBj4kwkq4B_6v3n8g3auqCRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346909575</pqid></control><display><type>article</type><title>High-efficiency quantum-dot light-emitting devices with enhanced charge injection</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Mashford, Benjamin S. ; Stevenson, Matthew ; Popovic, Zoran ; Hamilton, Charles ; Zhou, Zhaoqun ; Breen, Craig ; Steckel, Jonathan ; Bulovic, Vladimir ; Bawendi, Moungi ; Coe-Sullivan, Seth ; Kazlas, Peter T.</creator><creatorcontrib>Mashford, Benjamin S. ; Stevenson, Matthew ; Popovic, Zoran ; Hamilton, Charles ; Zhou, Zhaoqun ; Breen, Craig ; Steckel, Jonathan ; Bulovic, Vladimir ; Bawendi, Moungi ; Coe-Sullivan, Seth ; Kazlas, Peter T.</creatorcontrib><description>We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the electron transport layer) facilitates charge transfer, which is responsible for both injecting electrons and maintaining an optimal charge balance for the quantum dot emitters. We show that QLED performance can be modified by controlling the distance of the electroluminescence recombination zone within the quantum dot film from the quantum dot–ZnO interface. Devices are reported with a luminous efficiency of 19 cd A
−1
, corresponding to an external quantum efficiency of 18% (which is close to the theoretical maximum of 20%) and an internal quantum efficiency of 90%. The corresponding luminous power efficiency exceeds 25 lm W
−1
due to the low operating voltage of the device.
Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W
−1
.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2013.70</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020 ; 639/624/399/1017 ; Applied and Technical Physics ; Charge ; Charge transfer ; Devices ; Electric potential ; Electronics ; Emitters ; Physics ; Quantum dots ; Quantum efficiency ; Quantum Physics</subject><ispartof>Nature photonics, 2013-05, Vol.7 (5), p.407-412</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-137df101a5bede9e4a5d4f1e1f2079edbe9625dc75214bf99af30f561ac1b6e33</citedby><cites>FETCH-LOGICAL-c343t-137df101a5bede9e4a5d4f1e1f2079edbe9625dc75214bf99af30f561ac1b6e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mashford, Benjamin S.</creatorcontrib><creatorcontrib>Stevenson, Matthew</creatorcontrib><creatorcontrib>Popovic, Zoran</creatorcontrib><creatorcontrib>Hamilton, Charles</creatorcontrib><creatorcontrib>Zhou, Zhaoqun</creatorcontrib><creatorcontrib>Breen, Craig</creatorcontrib><creatorcontrib>Steckel, Jonathan</creatorcontrib><creatorcontrib>Bulovic, Vladimir</creatorcontrib><creatorcontrib>Bawendi, Moungi</creatorcontrib><creatorcontrib>Coe-Sullivan, Seth</creatorcontrib><creatorcontrib>Kazlas, Peter T.</creatorcontrib><title>High-efficiency quantum-dot light-emitting devices with enhanced charge injection</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the electron transport layer) facilitates charge transfer, which is responsible for both injecting electrons and maintaining an optimal charge balance for the quantum dot emitters. We show that QLED performance can be modified by controlling the distance of the electroluminescence recombination zone within the quantum dot film from the quantum dot–ZnO interface. Devices are reported with a luminous efficiency of 19 cd A
−1
, corresponding to an external quantum efficiency of 18% (which is close to the theoretical maximum of 20%) and an internal quantum efficiency of 90%. The corresponding luminous power efficiency exceeds 25 lm W
−1
due to the low operating voltage of the device.
Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W
−1
.</description><subject>639/624/1020</subject><subject>639/624/399/1017</subject><subject>Applied and Technical Physics</subject><subject>Charge</subject><subject>Charge transfer</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Emitters</subject><subject>Physics</subject><subject>Quantum dots</subject><subject>Quantum efficiency</subject><subject>Quantum Physics</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFLwzAUh4MoOKdnrwUvXrolTdM2RxnqhIEIeg5p8tJmdOmWpMr-ezs2RARP78H7fj8eH0K3BM8IptXcbds-9m6WYUJnJT5DE1LmPM0rTs9_9opdoqsQ1hgzyrNsgt6WtmlTMMYqC07tk90gXRw2qe5j0o23mMLGxmhdk2j4tApC8mVjm4BrpVOgE9VK30Bi3RpUtL27RhdGdgFuTnOKPp4e3xfLdPX6_LJ4WKWK5jSmhJbaEEwkq0EDh1wynRsCxGS45KBr4EXGtCpZRvLacC4NxYYVRCpSF0DpFN0fe7e-3w0QotjYoKDrpIN-CILQgpGcVlUxond_0HU_eDd-N1J5wTFnJRup-ZFSvg_BgxFbbzfS7wXB4qBYnBSLg2JR4jGBj4kwkq4B_6v3n8g3auqCRQ</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Mashford, Benjamin S.</creator><creator>Stevenson, Matthew</creator><creator>Popovic, Zoran</creator><creator>Hamilton, Charles</creator><creator>Zhou, Zhaoqun</creator><creator>Breen, Craig</creator><creator>Steckel, Jonathan</creator><creator>Bulovic, Vladimir</creator><creator>Bawendi, Moungi</creator><creator>Coe-Sullivan, Seth</creator><creator>Kazlas, Peter T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20130501</creationdate><title>High-efficiency quantum-dot light-emitting devices with enhanced charge injection</title><author>Mashford, Benjamin S. ; Stevenson, Matthew ; Popovic, Zoran ; Hamilton, Charles ; Zhou, Zhaoqun ; Breen, Craig ; Steckel, Jonathan ; Bulovic, Vladimir ; Bawendi, Moungi ; Coe-Sullivan, Seth ; Kazlas, Peter T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-137df101a5bede9e4a5d4f1e1f2079edbe9625dc75214bf99af30f561ac1b6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/624/1020</topic><topic>639/624/399/1017</topic><topic>Applied and Technical Physics</topic><topic>Charge</topic><topic>Charge transfer</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Emitters</topic><topic>Physics</topic><topic>Quantum dots</topic><topic>Quantum efficiency</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mashford, Benjamin S.</creatorcontrib><creatorcontrib>Stevenson, Matthew</creatorcontrib><creatorcontrib>Popovic, Zoran</creatorcontrib><creatorcontrib>Hamilton, Charles</creatorcontrib><creatorcontrib>Zhou, Zhaoqun</creatorcontrib><creatorcontrib>Breen, Craig</creatorcontrib><creatorcontrib>Steckel, Jonathan</creatorcontrib><creatorcontrib>Bulovic, Vladimir</creatorcontrib><creatorcontrib>Bawendi, Moungi</creatorcontrib><creatorcontrib>Coe-Sullivan, Seth</creatorcontrib><creatorcontrib>Kazlas, Peter T.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashford, Benjamin S.</au><au>Stevenson, Matthew</au><au>Popovic, Zoran</au><au>Hamilton, Charles</au><au>Zhou, Zhaoqun</au><au>Breen, Craig</au><au>Steckel, Jonathan</au><au>Bulovic, Vladimir</au><au>Bawendi, Moungi</au><au>Coe-Sullivan, Seth</au><au>Kazlas, Peter T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-efficiency quantum-dot light-emitting devices with enhanced charge injection</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>7</volume><issue>5</issue><spage>407</spage><epage>412</epage><pages>407-412</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>We report a colour-saturated, red quantum-dot light-emitting device (QLED) using an inverted organic–inorganic hybrid device structure and colloidal CdSe–CdS (core–shell) quantum-dot emitters. The strong electronic coupling of quantum dots to an adjacent layer of ZnO nanocrystals (which form the electron transport layer) facilitates charge transfer, which is responsible for both injecting electrons and maintaining an optimal charge balance for the quantum dot emitters. We show that QLED performance can be modified by controlling the distance of the electroluminescence recombination zone within the quantum dot film from the quantum dot–ZnO interface. Devices are reported with a luminous efficiency of 19 cd A
−1
, corresponding to an external quantum efficiency of 18% (which is close to the theoretical maximum of 20%) and an internal quantum efficiency of 90%. The corresponding luminous power efficiency exceeds 25 lm W
−1
due to the low operating voltage of the device.
Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W
−1
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2013.70</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2013-05, Vol.7 (5), p.407-412 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365143886 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/624/1020 639/624/399/1017 Applied and Technical Physics Charge Charge transfer Devices Electric potential Electronics Emitters Physics Quantum dots Quantum efficiency Quantum Physics |
title | High-efficiency quantum-dot light-emitting devices with enhanced charge injection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-efficiency%20quantum-dot%20light-emitting%20devices%20with%20enhanced%20charge%20injection&rft.jtitle=Nature%20photonics&rft.au=Mashford,%20Benjamin%20S.&rft.date=2013-05-01&rft.volume=7&rft.issue=5&rft.spage=407&rft.epage=412&rft.pages=407-412&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2013.70&rft_dat=%3Cproquest_cross%3E2957793291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346909575&rft_id=info:pmid/&rfr_iscdi=true |