Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system

[Display omitted] ► CdTe quantum dots generate free radical species upon exposure to visible radiation. ► A high power visible LED lamp was used as photoirradiation element. ► The laboratory-made LED photocatalytic unit was implemented inline in a MPFS. ► Free radical species oxidize luminol produci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2012-07, Vol.735, p.69-75
Hauptverfasser: Ribeiro, David S.M., Frigerio, Christian, Santos, João L.M., Prior, João A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue
container_start_page 69
container_title Analytica chimica acta
container_volume 735
creator Ribeiro, David S.M.
Frigerio, Christian
Santos, João L.M.
Prior, João A.V.
description [Display omitted] ► CdTe quantum dots generate free radical species upon exposure to visible radiation. ► A high power visible LED lamp was used as photoirradiation element. ► The laboratory-made LED photocatalytic unit was implemented inline in a MPFS. ► Free radical species oxidize luminol producing a strong chemiluminescence emission. ► Epinephrine scavenges free radical species quenching chemiluminescence emission. Quantum dots (QD) are semiconductor nanocrystals able to generate free radical species upon exposure to an electromagnetic radiation, usually in the ultraviolet wavelength range. In this work, CdTe QD were used as highly reactive oxygen species (ROS) generators for the control of pharmaceutical formulations containing epinephrine. The developed approach was based on the chemiluminometric monitoring of the quenching effect of epinephrine on the oxidation of luminol by the produced ROS. Due to the relatively low energy band-gap of this chalcogenide a high power visible light emitting diode (LED) lamp was used as photoirradiation element and assembled in a laboratory-made photocatalytic unit. Owing to the very short lifetime of ROS and to ensure both reproducible generation and time-controlled reaction implementation and development, all reactional processes were implemented inline by using an automated multipumping micro-flow system. A linear working range for epinephrine concentration of up to 2.28×10−6molL−1 (r=0.9953; n=5) was verified. The determination rate was about 79 determinations per hour and the detection limit was about 8.69×10−8molL−1. The results obtained in the analysis of epinephrine pharmaceutical formulations by using the proposed methodology were in good agreement with those furnished by the reference procedure, with relative deviations lower than 4.80%.
doi_str_mv 10.1016/j.aca.2012.05.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365131109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267012007726</els_id><sourcerecordid>1021450966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-8c3ab6aae2ecd4c9aa444712066254d38571e5a15369d6c3ba645fc77121f7a23</originalsourceid><addsrcrecordid>eNqFkc2KFDEURoMoTs_oA7iRbAQ3Vea_unAljY7CgC7GdbiVutWTpqrSk6Ra-yl8ZTN2qzuFQAg53-XyHUJecFZzxs2bXQ0OasG4qJmumVSPyIqvG1kpKdRjsmKMyUqYhl2Qy5R25Sk4U0_JhRANly1vV-THl7uQA7jsD5B9mGl3pAeffDciHf32LtMw0E1_i_R-gTkvE-1DTnQIkfp59DPSLc4YT9mCRvw1C2n4fiw_NO3ReUwFplDOksMEGXs6LWP2-2Xa-3lLhzF8o-mYMk7PyJMBxoTPz_cV-frh_e3mY3Xz-frT5t1N5dRa5GrtJHQGAAW6XrkWQCnVcMGMEVr1cq0bjhq4lqbtjZMdGKUH1xSEDw0IeUVen-buY7hfMGU7-eRwHGHGsCTLpdFccs7a_6OlVaVZa0xB-Ql1MaQUcbD76CeIxwLZB2V2Z4sy-6DMMm2LspJ5eR6_dBP2fxK_HRXg1RmA5GAcIszOp7-cYUW30YV7e-Kw9HbwGG0q1c8Oex_RZdsH_481fgII-LWH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021450966</pqid></control><display><type>article</type><title>Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ribeiro, David S.M. ; Frigerio, Christian ; Santos, João L.M. ; Prior, João A.V.</creator><creatorcontrib>Ribeiro, David S.M. ; Frigerio, Christian ; Santos, João L.M. ; Prior, João A.V.</creatorcontrib><description>[Display omitted] ► CdTe quantum dots generate free radical species upon exposure to visible radiation. ► A high power visible LED lamp was used as photoirradiation element. ► The laboratory-made LED photocatalytic unit was implemented inline in a MPFS. ► Free radical species oxidize luminol producing a strong chemiluminescence emission. ► Epinephrine scavenges free radical species quenching chemiluminescence emission. Quantum dots (QD) are semiconductor nanocrystals able to generate free radical species upon exposure to an electromagnetic radiation, usually in the ultraviolet wavelength range. In this work, CdTe QD were used as highly reactive oxygen species (ROS) generators for the control of pharmaceutical formulations containing epinephrine. The developed approach was based on the chemiluminometric monitoring of the quenching effect of epinephrine on the oxidation of luminol by the produced ROS. Due to the relatively low energy band-gap of this chalcogenide a high power visible light emitting diode (LED) lamp was used as photoirradiation element and assembled in a laboratory-made photocatalytic unit. Owing to the very short lifetime of ROS and to ensure both reproducible generation and time-controlled reaction implementation and development, all reactional processes were implemented inline by using an automated multipumping micro-flow system. A linear working range for epinephrine concentration of up to 2.28×10−6molL−1 (r=0.9953; n=5) was verified. The determination rate was about 79 determinations per hour and the detection limit was about 8.69×10−8molL−1. The results obtained in the analysis of epinephrine pharmaceutical formulations by using the proposed methodology were in good agreement with those furnished by the reference procedure, with relative deviations lower than 4.80%.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2012.05.034</identifier><identifier>PMID: 22713919</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Antioxidants - analysis ; Automated ; Bronchodilator Agents - analysis ; Cadmium Compounds - chemistry ; Cadmium tellurides ; Chemical and thermal methods ; Chemiluminescence ; Chemistry ; Epinephrine ; Epinephrine - analysis ; Equipment Design ; Exact sciences and technology ; Formulations ; Light ; Light-emitting diodes ; Limit of Detection ; Luminescent Agents - chemistry ; Luminescent Measurements - instrumentation ; Luminescent Measurements - methods ; Luminol - chemistry ; Multipumping flow system ; Oxidation-Reduction ; Pharmaceutical Preparations - chemistry ; Pharmaceuticals ; Photochemical Processes ; Quantum Dots ; Reactive oxygen species ; Reactive Oxygen Species - chemistry ; Semiconductors ; Tellurium - chemistry ; Visible light photoirradiation</subject><ispartof>Analytica chimica acta, 2012-07, Vol.735, p.69-75</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-8c3ab6aae2ecd4c9aa444712066254d38571e5a15369d6c3ba645fc77121f7a23</citedby><cites>FETCH-LOGICAL-c482t-8c3ab6aae2ecd4c9aa444712066254d38571e5a15369d6c3ba645fc77121f7a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2012.05.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26043265$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22713919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribeiro, David S.M.</creatorcontrib><creatorcontrib>Frigerio, Christian</creatorcontrib><creatorcontrib>Santos, João L.M.</creatorcontrib><creatorcontrib>Prior, João A.V.</creatorcontrib><title>Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>[Display omitted] ► CdTe quantum dots generate free radical species upon exposure to visible radiation. ► A high power visible LED lamp was used as photoirradiation element. ► The laboratory-made LED photocatalytic unit was implemented inline in a MPFS. ► Free radical species oxidize luminol producing a strong chemiluminescence emission. ► Epinephrine scavenges free radical species quenching chemiluminescence emission. Quantum dots (QD) are semiconductor nanocrystals able to generate free radical species upon exposure to an electromagnetic radiation, usually in the ultraviolet wavelength range. In this work, CdTe QD were used as highly reactive oxygen species (ROS) generators for the control of pharmaceutical formulations containing epinephrine. The developed approach was based on the chemiluminometric monitoring of the quenching effect of epinephrine on the oxidation of luminol by the produced ROS. Due to the relatively low energy band-gap of this chalcogenide a high power visible light emitting diode (LED) lamp was used as photoirradiation element and assembled in a laboratory-made photocatalytic unit. Owing to the very short lifetime of ROS and to ensure both reproducible generation and time-controlled reaction implementation and development, all reactional processes were implemented inline by using an automated multipumping micro-flow system. A linear working range for epinephrine concentration of up to 2.28×10−6molL−1 (r=0.9953; n=5) was verified. The determination rate was about 79 determinations per hour and the detection limit was about 8.69×10−8molL−1. The results obtained in the analysis of epinephrine pharmaceutical formulations by using the proposed methodology were in good agreement with those furnished by the reference procedure, with relative deviations lower than 4.80%.</description><subject>Analytical chemistry</subject><subject>Antioxidants - analysis</subject><subject>Automated</subject><subject>Bronchodilator Agents - analysis</subject><subject>Cadmium Compounds - chemistry</subject><subject>Cadmium tellurides</subject><subject>Chemical and thermal methods</subject><subject>Chemiluminescence</subject><subject>Chemistry</subject><subject>Epinephrine</subject><subject>Epinephrine - analysis</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Formulations</subject><subject>Light</subject><subject>Light-emitting diodes</subject><subject>Limit of Detection</subject><subject>Luminescent Agents - chemistry</subject><subject>Luminescent Measurements - instrumentation</subject><subject>Luminescent Measurements - methods</subject><subject>Luminol - chemistry</subject><subject>Multipumping flow system</subject><subject>Oxidation-Reduction</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceuticals</subject><subject>Photochemical Processes</subject><subject>Quantum Dots</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - chemistry</subject><subject>Semiconductors</subject><subject>Tellurium - chemistry</subject><subject>Visible light photoirradiation</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2KFDEURoMoTs_oA7iRbAQ3Vea_unAljY7CgC7GdbiVutWTpqrSk6Ra-yl8ZTN2qzuFQAg53-XyHUJecFZzxs2bXQ0OasG4qJmumVSPyIqvG1kpKdRjsmKMyUqYhl2Qy5R25Sk4U0_JhRANly1vV-THl7uQA7jsD5B9mGl3pAeffDciHf32LtMw0E1_i_R-gTkvE-1DTnQIkfp59DPSLc4YT9mCRvw1C2n4fiw_NO3ReUwFplDOksMEGXs6LWP2-2Xa-3lLhzF8o-mYMk7PyJMBxoTPz_cV-frh_e3mY3Xz-frT5t1N5dRa5GrtJHQGAAW6XrkWQCnVcMGMEVr1cq0bjhq4lqbtjZMdGKUH1xSEDw0IeUVen-buY7hfMGU7-eRwHGHGsCTLpdFccs7a_6OlVaVZa0xB-Ql1MaQUcbD76CeIxwLZB2V2Z4sy-6DMMm2LspJ5eR6_dBP2fxK_HRXg1RmA5GAcIszOp7-cYUW30YV7e-Kw9HbwGG0q1c8Oex_RZdsH_481fgII-LWH</recordid><startdate>20120720</startdate><enddate>20120720</enddate><creator>Ribeiro, David S.M.</creator><creator>Frigerio, Christian</creator><creator>Santos, João L.M.</creator><creator>Prior, João A.V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120720</creationdate><title>Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system</title><author>Ribeiro, David S.M. ; Frigerio, Christian ; Santos, João L.M. ; Prior, João A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-8c3ab6aae2ecd4c9aa444712066254d38571e5a15369d6c3ba645fc77121f7a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical chemistry</topic><topic>Antioxidants - analysis</topic><topic>Automated</topic><topic>Bronchodilator Agents - analysis</topic><topic>Cadmium Compounds - chemistry</topic><topic>Cadmium tellurides</topic><topic>Chemical and thermal methods</topic><topic>Chemiluminescence</topic><topic>Chemistry</topic><topic>Epinephrine</topic><topic>Epinephrine - analysis</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Formulations</topic><topic>Light</topic><topic>Light-emitting diodes</topic><topic>Limit of Detection</topic><topic>Luminescent Agents - chemistry</topic><topic>Luminescent Measurements - instrumentation</topic><topic>Luminescent Measurements - methods</topic><topic>Luminol - chemistry</topic><topic>Multipumping flow system</topic><topic>Oxidation-Reduction</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceuticals</topic><topic>Photochemical Processes</topic><topic>Quantum Dots</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - chemistry</topic><topic>Semiconductors</topic><topic>Tellurium - chemistry</topic><topic>Visible light photoirradiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, David S.M.</creatorcontrib><creatorcontrib>Frigerio, Christian</creatorcontrib><creatorcontrib>Santos, João L.M.</creatorcontrib><creatorcontrib>Prior, João A.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, David S.M.</au><au>Frigerio, Christian</au><au>Santos, João L.M.</au><au>Prior, João A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2012-07-20</date><risdate>2012</risdate><volume>735</volume><spage>69</spage><epage>75</epage><pages>69-75</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>[Display omitted] ► CdTe quantum dots generate free radical species upon exposure to visible radiation. ► A high power visible LED lamp was used as photoirradiation element. ► The laboratory-made LED photocatalytic unit was implemented inline in a MPFS. ► Free radical species oxidize luminol producing a strong chemiluminescence emission. ► Epinephrine scavenges free radical species quenching chemiluminescence emission. Quantum dots (QD) are semiconductor nanocrystals able to generate free radical species upon exposure to an electromagnetic radiation, usually in the ultraviolet wavelength range. In this work, CdTe QD were used as highly reactive oxygen species (ROS) generators for the control of pharmaceutical formulations containing epinephrine. The developed approach was based on the chemiluminometric monitoring of the quenching effect of epinephrine on the oxidation of luminol by the produced ROS. Due to the relatively low energy band-gap of this chalcogenide a high power visible light emitting diode (LED) lamp was used as photoirradiation element and assembled in a laboratory-made photocatalytic unit. Owing to the very short lifetime of ROS and to ensure both reproducible generation and time-controlled reaction implementation and development, all reactional processes were implemented inline by using an automated multipumping micro-flow system. A linear working range for epinephrine concentration of up to 2.28×10−6molL−1 (r=0.9953; n=5) was verified. The determination rate was about 79 determinations per hour and the detection limit was about 8.69×10−8molL−1. The results obtained in the analysis of epinephrine pharmaceutical formulations by using the proposed methodology were in good agreement with those furnished by the reference procedure, with relative deviations lower than 4.80%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>22713919</pmid><doi>10.1016/j.aca.2012.05.034</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2012-07, Vol.735, p.69-75
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_1365131109
source MEDLINE; Elsevier ScienceDirect Journals
subjects Analytical chemistry
Antioxidants - analysis
Automated
Bronchodilator Agents - analysis
Cadmium Compounds - chemistry
Cadmium tellurides
Chemical and thermal methods
Chemiluminescence
Chemistry
Epinephrine
Epinephrine - analysis
Equipment Design
Exact sciences and technology
Formulations
Light
Light-emitting diodes
Limit of Detection
Luminescent Agents - chemistry
Luminescent Measurements - instrumentation
Luminescent Measurements - methods
Luminol - chemistry
Multipumping flow system
Oxidation-Reduction
Pharmaceutical Preparations - chemistry
Pharmaceuticals
Photochemical Processes
Quantum Dots
Reactive oxygen species
Reactive Oxygen Species - chemistry
Semiconductors
Tellurium - chemistry
Visible light photoirradiation
title Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoactivation%20by%20visible%20light%20of%20CdTe%20quantum%20dots%20for%20inline%20generation%20of%20reactive%20oxygen%20species%20in%20an%20automated%20multipumping%20flow%20system&rft.jtitle=Analytica%20chimica%20acta&rft.au=Ribeiro,%20David%20S.M.&rft.date=2012-07-20&rft.volume=735&rft.spage=69&rft.epage=75&rft.pages=69-75&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2012.05.034&rft_dat=%3Cproquest_cross%3E1021450966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1021450966&rft_id=info:pmid/22713919&rft_els_id=S0003267012007726&rfr_iscdi=true