On a phase transition model
An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2013-05, Vol.47 (1-2), p.1-23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 1-2 |
container_start_page | 1 |
container_title | Calculus of variations and partial differential equations |
container_volume | 47 |
creator | Byeon, Jaeyoung Rabinowitz, Paul H. |
description | An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori bounds and an approximation procedure give the general case. Decay properties are also studied and a sharp transition result with an arbitrary interface is proved. |
doi_str_mv | 10.1007/s00526-012-0507-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365129817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1365129817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a4c99e22ceaf619892c31af43c2ef32cc73acbdbf9dcc1302b311c67bbb713023</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHFTcOMm-l6SNs1SBr9gYDa6DumbVDt02jFpF_57U-pCBFePC-deHoexS4RbBNB3ESAXBQcUHHLQXByxBSqZUinzY7YAoxQXRWFO2VmMOwDMS6EW7GrTZS47fLjosyG4LjZD03fZvt_69pyd1K6N_uLnLtnb48Pr6pmvN08vq_s1J6nMwJ0iY7wQ5F1doCmNIImuVpKEr6Ug0tJRta1qsyVCCaKSiFToqqr0FOWS3cy7h9B_jj4Odt9E8m3rOt-P0aIschSmRJ3Q6z_orh9Dl75LVK6lUSVConCmKPQxBl_bQ2j2LnxZBDvpsrMum3TZSZednhBzJya2e_fh1_K_pW-XmmqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357394810</pqid></control><display><type>article</type><title>On a phase transition model</title><source>SpringerLink Journals</source><creator>Byeon, Jaeyoung ; Rabinowitz, Paul H.</creator><creatorcontrib>Byeon, Jaeyoung ; Rabinowitz, Paul H.</creatorcontrib><description>An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori bounds and an approximation procedure give the general case. Decay properties are also studied and a sharp transition result with an arbitrary interface is proved.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-012-0507-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Approximation ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Decay ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Minimization ; Optimization ; Partial differential equations ; Phase transformations ; Phase transitions ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2013-05, Vol.47 (1-2), p.1-23</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a4c99e22ceaf619892c31af43c2ef32cc73acbdbf9dcc1302b311c67bbb713023</citedby><cites>FETCH-LOGICAL-c349t-a4c99e22ceaf619892c31af43c2ef32cc73acbdbf9dcc1302b311c67bbb713023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-012-0507-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-012-0507-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Byeon, Jaeyoung</creatorcontrib><creatorcontrib>Rabinowitz, Paul H.</creatorcontrib><title>On a phase transition model</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori bounds and an approximation procedure give the general case. Decay properties are also studied and a sharp transition result with an arbitrary interface is proved.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Decay</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Phase transformations</subject><subject>Phase transitions</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHFTcOMm-l6SNs1SBr9gYDa6DumbVDt02jFpF_57U-pCBFePC-deHoexS4RbBNB3ESAXBQcUHHLQXByxBSqZUinzY7YAoxQXRWFO2VmMOwDMS6EW7GrTZS47fLjosyG4LjZD03fZvt_69pyd1K6N_uLnLtnb48Pr6pmvN08vq_s1J6nMwJ0iY7wQ5F1doCmNIImuVpKEr6Ug0tJRta1qsyVCCaKSiFToqqr0FOWS3cy7h9B_jj4Odt9E8m3rOt-P0aIschSmRJ3Q6z_orh9Dl75LVK6lUSVConCmKPQxBl_bQ2j2LnxZBDvpsrMum3TZSZednhBzJya2e_fh1_K_pW-XmmqX</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Byeon, Jaeyoung</creator><creator>Rabinowitz, Paul H.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>On a phase transition model</title><author>Byeon, Jaeyoung ; Rabinowitz, Paul H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a4c99e22ceaf619892c31af43c2ef32cc73acbdbf9dcc1302b311c67bbb713023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Decay</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Phase transformations</topic><topic>Phase transitions</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byeon, Jaeyoung</creatorcontrib><creatorcontrib>Rabinowitz, Paul H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byeon, Jaeyoung</au><au>Rabinowitz, Paul H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a phase transition model</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>47</volume><issue>1-2</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori bounds and an approximation procedure give the general case. Decay properties are also studied and a sharp transition result with an arbitrary interface is proved.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00526-012-0507-2</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2013-05, Vol.47 (1-2), p.1-23 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365129817 |
source | SpringerLink Journals |
subjects | Analysis Approximation Calculus of variations Calculus of Variations and Optimal Control Optimization Control Decay Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Minimization Optimization Partial differential equations Phase transformations Phase transitions Systems Theory Theoretical |
title | On a phase transition model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20phase%20transition%20model&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Byeon,%20Jaeyoung&rft.date=2013-05-01&rft.volume=47&rft.issue=1-2&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-012-0507-2&rft_dat=%3Cproquest_cross%3E1365129817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357394810&rft_id=info:pmid/&rfr_iscdi=true |