On a phase transition model

An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2013-05, Vol.47 (1-2), p.1-23
Hauptverfasser: Byeon, Jaeyoung, Rabinowitz, Paul H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1-2
container_start_page 1
container_title Calculus of variations and partial differential equations
container_volume 47
creator Byeon, Jaeyoung
Rabinowitz, Paul H.
description An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori bounds and an approximation procedure give the general case. Decay properties are also studied and a sharp transition result with an arbitrary interface is proved.
doi_str_mv 10.1007/s00526-012-0507-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365129817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1365129817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a4c99e22ceaf619892c31af43c2ef32cc73acbdbf9dcc1302b311c67bbb713023</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHFTcOMm-l6SNs1SBr9gYDa6DumbVDt02jFpF_57U-pCBFePC-deHoexS4RbBNB3ESAXBQcUHHLQXByxBSqZUinzY7YAoxQXRWFO2VmMOwDMS6EW7GrTZS47fLjosyG4LjZD03fZvt_69pyd1K6N_uLnLtnb48Pr6pmvN08vq_s1J6nMwJ0iY7wQ5F1doCmNIImuVpKEr6Ug0tJRta1qsyVCCaKSiFToqqr0FOWS3cy7h9B_jj4Odt9E8m3rOt-P0aIschSmRJ3Q6z_orh9Dl75LVK6lUSVConCmKPQxBl_bQ2j2LnxZBDvpsrMum3TZSZednhBzJya2e_fh1_K_pW-XmmqX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357394810</pqid></control><display><type>article</type><title>On a phase transition model</title><source>SpringerLink Journals</source><creator>Byeon, Jaeyoung ; Rabinowitz, Paul H.</creator><creatorcontrib>Byeon, Jaeyoung ; Rabinowitz, Paul H.</creatorcontrib><description>An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori bounds and an approximation procedure give the general case. Decay properties are also studied and a sharp transition result with an arbitrary interface is proved.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-012-0507-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Approximation ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Decay ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Minimization ; Optimization ; Partial differential equations ; Phase transformations ; Phase transitions ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2013-05, Vol.47 (1-2), p.1-23</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-a4c99e22ceaf619892c31af43c2ef32cc73acbdbf9dcc1302b311c67bbb713023</citedby><cites>FETCH-LOGICAL-c349t-a4c99e22ceaf619892c31af43c2ef32cc73acbdbf9dcc1302b311c67bbb713023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-012-0507-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-012-0507-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Byeon, Jaeyoung</creatorcontrib><creatorcontrib>Rabinowitz, Paul H.</creatorcontrib><title>On a phase transition model</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori bounds and an approximation procedure give the general case. Decay properties are also studied and a sharp transition result with an arbitrary interface is proved.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Decay</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Phase transformations</subject><subject>Phase transitions</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHFTcOMm-l6SNs1SBr9gYDa6DumbVDt02jFpF_57U-pCBFePC-deHoexS4RbBNB3ESAXBQcUHHLQXByxBSqZUinzY7YAoxQXRWFO2VmMOwDMS6EW7GrTZS47fLjosyG4LjZD03fZvt_69pyd1K6N_uLnLtnb48Pr6pmvN08vq_s1J6nMwJ0iY7wQ5F1doCmNIImuVpKEr6Ug0tJRta1qsyVCCaKSiFToqqr0FOWS3cy7h9B_jj4Odt9E8m3rOt-P0aIschSmRJ3Q6z_orh9Dl75LVK6lUSVConCmKPQxBl_bQ2j2LnxZBDvpsrMum3TZSZednhBzJya2e_fh1_K_pW-XmmqX</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Byeon, Jaeyoung</creator><creator>Rabinowitz, Paul H.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>On a phase transition model</title><author>Byeon, Jaeyoung ; Rabinowitz, Paul H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a4c99e22ceaf619892c31af43c2ef32cc73acbdbf9dcc1302b311c67bbb713023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Decay</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Phase transformations</topic><topic>Phase transitions</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byeon, Jaeyoung</creatorcontrib><creatorcontrib>Rabinowitz, Paul H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byeon, Jaeyoung</au><au>Rabinowitz, Paul H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a phase transition model</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>47</volume><issue>1-2</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>An Allen–Cahn phase transition model with a periodic nonautonomous term is presented for which an infinite number of transition states is shown to exist. A constrained minimization argument and the analysis of a limit problem are employed to get states having a finite number of transitions. A priori bounds and an approximation procedure give the general case. Decay properties are also studied and a sharp transition result with an arbitrary interface is proved.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00526-012-0507-2</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2013-05, Vol.47 (1-2), p.1-23
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_miscellaneous_1365129817
source SpringerLink Journals
subjects Analysis
Approximation
Calculus of variations
Calculus of Variations and Optimal Control
Optimization
Control
Decay
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Minimization
Optimization
Partial differential equations
Phase transformations
Phase transitions
Systems Theory
Theoretical
title On a phase transition model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20phase%20transition%20model&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Byeon,%20Jaeyoung&rft.date=2013-05-01&rft.volume=47&rft.issue=1-2&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-012-0507-2&rft_dat=%3Cproquest_cross%3E1365129817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357394810&rft_id=info:pmid/&rfr_iscdi=true