Algorithms for polynomial spectral factorization and bounded-real balanced state space representations
We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, bas...
Gespeichert in:
Veröffentlicht in: | Mathematics of control, signals, and systems signals, and systems, 2013-06, Vol.25 (2), p.231-255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 2 |
container_start_page | 231 |
container_title | Mathematics of control, signals, and systems |
container_volume | 25 |
creator | Rapisarda, P. Trentelman, H. L. Minh, H. B. |
description | We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, based on a technique to solve a generalization of the Nevanlinna interpolation problem. |
doi_str_mv | 10.1007/s00498-012-0095-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365127011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2946952211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-301b72c1817c168c0778de5027b8d8f06aab8e35672553c67d656c8a9aff5d763</originalsourceid><addsrcrecordid>eNp1kE1LJDEQhoO44OjuD9hbgxcvWavSnY8-ivixIHhR2FtIp6u1pafTJhlQf_1mHA8ieKqCep6X4mXsN8IfBNCnCaBpDQcUHKCV_GWPrbCpJZfK_NtnK2hrwRtsmwN2mNITAKDSuGLD2fQQ4pgf16kaQqyWML3OYT26qUoL-RzLMjifC_Pm8hjmys191YXN3FPPI5Vz5yY3e-qrlF2mojlPVaQlUqI5v0vpJ_sxuCnRr495xO4vL-7Or_nN7dXf87Mb7utWZF4Ddlp4NKg9KuNBa9OTBKE705sBlHOdoVoqLaSsvdK9ksob17phkL1W9RE72eUuMTxvKGW7HpOnqXxIYZMs1kqi0IBY0OMv6FPYxLl8VyhhsEEBplC4o3wMKUUa7BLHtYuvFsFum7e75m1p3m6bty_FETsnFXZ-oPgp-VvpP6mTh-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1328141208</pqid></control><display><type>article</type><title>Algorithms for polynomial spectral factorization and bounded-real balanced state space representations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rapisarda, P. ; Trentelman, H. L. ; Minh, H. B.</creator><creatorcontrib>Rapisarda, P. ; Trentelman, H. L. ; Minh, H. B.</creatorcontrib><description>We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, based on a technique to solve a generalization of the Nevanlinna interpolation problem.</description><identifier>ISSN: 0932-4194</identifier><identifier>EISSN: 1435-568X</identifier><identifier>DOI: 10.1007/s00498-012-0095-x</identifier><identifier>CODEN: MCSYEB</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithms ; Balancing ; Communications Engineering ; Computer science ; Control ; Factorization ; Interpolation ; Linear algebra ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mechatronics ; Networks ; Original Article ; Polynomials ; Representations ; Robotics ; Spectra ; System theory ; Systems Theory ; Variables</subject><ispartof>Mathematics of control, signals, and systems, 2013-06, Vol.25 (2), p.231-255</ispartof><rights>Springer-Verlag London 2012</rights><rights>Springer-Verlag London 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-301b72c1817c168c0778de5027b8d8f06aab8e35672553c67d656c8a9aff5d763</citedby><cites>FETCH-LOGICAL-c392t-301b72c1817c168c0778de5027b8d8f06aab8e35672553c67d656c8a9aff5d763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00498-012-0095-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00498-012-0095-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rapisarda, P.</creatorcontrib><creatorcontrib>Trentelman, H. L.</creatorcontrib><creatorcontrib>Minh, H. B.</creatorcontrib><title>Algorithms for polynomial spectral factorization and bounded-real balanced state space representations</title><title>Mathematics of control, signals, and systems</title><addtitle>Math. Control Signals Syst</addtitle><description>We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, based on a technique to solve a generalization of the Nevanlinna interpolation problem.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Communications Engineering</subject><subject>Computer science</subject><subject>Control</subject><subject>Factorization</subject><subject>Interpolation</subject><subject>Linear algebra</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechatronics</subject><subject>Networks</subject><subject>Original Article</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Robotics</subject><subject>Spectra</subject><subject>System theory</subject><subject>Systems Theory</subject><subject>Variables</subject><issn>0932-4194</issn><issn>1435-568X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LJDEQhoO44OjuD9hbgxcvWavSnY8-ivixIHhR2FtIp6u1pafTJhlQf_1mHA8ieKqCep6X4mXsN8IfBNCnCaBpDQcUHKCV_GWPrbCpJZfK_NtnK2hrwRtsmwN2mNITAKDSuGLD2fQQ4pgf16kaQqyWML3OYT26qUoL-RzLMjifC_Pm8hjmys191YXN3FPPI5Vz5yY3e-qrlF2mojlPVaQlUqI5v0vpJ_sxuCnRr495xO4vL-7Or_nN7dXf87Mb7utWZF4Ddlp4NKg9KuNBa9OTBKE705sBlHOdoVoqLaSsvdK9ksob17phkL1W9RE72eUuMTxvKGW7HpOnqXxIYZMs1kqi0IBY0OMv6FPYxLl8VyhhsEEBplC4o3wMKUUa7BLHtYuvFsFum7e75m1p3m6bty_FETsnFXZ-oPgp-VvpP6mTh-I</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Rapisarda, P.</creator><creator>Trentelman, H. L.</creator><creator>Minh, H. B.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130601</creationdate><title>Algorithms for polynomial spectral factorization and bounded-real balanced state space representations</title><author>Rapisarda, P. ; Trentelman, H. L. ; Minh, H. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-301b72c1817c168c0778de5027b8d8f06aab8e35672553c67d656c8a9aff5d763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Communications Engineering</topic><topic>Computer science</topic><topic>Control</topic><topic>Factorization</topic><topic>Interpolation</topic><topic>Linear algebra</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechatronics</topic><topic>Networks</topic><topic>Original Article</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Robotics</topic><topic>Spectra</topic><topic>System theory</topic><topic>Systems Theory</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rapisarda, P.</creatorcontrib><creatorcontrib>Trentelman, H. L.</creatorcontrib><creatorcontrib>Minh, H. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Mathematics of control, signals, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rapisarda, P.</au><au>Trentelman, H. L.</au><au>Minh, H. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms for polynomial spectral factorization and bounded-real balanced state space representations</atitle><jtitle>Mathematics of control, signals, and systems</jtitle><stitle>Math. Control Signals Syst</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>25</volume><issue>2</issue><spage>231</spage><epage>255</epage><pages>231-255</pages><issn>0932-4194</issn><eissn>1435-568X</eissn><coden>MCSYEB</coden><abstract>We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, based on a technique to solve a generalization of the Nevanlinna interpolation problem.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00498-012-0095-x</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-4194 |
ispartof | Mathematics of control, signals, and systems, 2013-06, Vol.25 (2), p.231-255 |
issn | 0932-4194 1435-568X |
language | eng |
recordid | cdi_proquest_miscellaneous_1365127011 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Balancing Communications Engineering Computer science Control Factorization Interpolation Linear algebra Mathematical models Mathematics Mathematics and Statistics Mechatronics Networks Original Article Polynomials Representations Robotics Spectra System theory Systems Theory Variables |
title | Algorithms for polynomial spectral factorization and bounded-real balanced state space representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20for%20polynomial%20spectral%20factorization%20and%20bounded-real%20balanced%20state%20space%20representations&rft.jtitle=Mathematics%20of%20control,%20signals,%20and%20systems&rft.au=Rapisarda,%20P.&rft.date=2013-06-01&rft.volume=25&rft.issue=2&rft.spage=231&rft.epage=255&rft.pages=231-255&rft.issn=0932-4194&rft.eissn=1435-568X&rft.coden=MCSYEB&rft_id=info:doi/10.1007/s00498-012-0095-x&rft_dat=%3Cproquest_cross%3E2946952211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1328141208&rft_id=info:pmid/&rfr_iscdi=true |