Algorithms for polynomial spectral factorization and bounded-real balanced state space representations

We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of control, signals, and systems signals, and systems, 2013-06, Vol.25 (2), p.231-255
Hauptverfasser: Rapisarda, P., Trentelman, H. L., Minh, H. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 2
container_start_page 231
container_title Mathematics of control, signals, and systems
container_volume 25
creator Rapisarda, P.
Trentelman, H. L.
Minh, H. B.
description We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, based on a technique to solve a generalization of the Nevanlinna interpolation problem.
doi_str_mv 10.1007/s00498-012-0095-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365127011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2946952211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-301b72c1817c168c0778de5027b8d8f06aab8e35672553c67d656c8a9aff5d763</originalsourceid><addsrcrecordid>eNp1kE1LJDEQhoO44OjuD9hbgxcvWavSnY8-ivixIHhR2FtIp6u1pafTJhlQf_1mHA8ieKqCep6X4mXsN8IfBNCnCaBpDQcUHKCV_GWPrbCpJZfK_NtnK2hrwRtsmwN2mNITAKDSuGLD2fQQ4pgf16kaQqyWML3OYT26qUoL-RzLMjifC_Pm8hjmys191YXN3FPPI5Vz5yY3e-qrlF2mojlPVaQlUqI5v0vpJ_sxuCnRr495xO4vL-7Or_nN7dXf87Mb7utWZF4Ddlp4NKg9KuNBa9OTBKE705sBlHOdoVoqLaSsvdK9ksob17phkL1W9RE72eUuMTxvKGW7HpOnqXxIYZMs1kqi0IBY0OMv6FPYxLl8VyhhsEEBplC4o3wMKUUa7BLHtYuvFsFum7e75m1p3m6bty_FETsnFXZ-oPgp-VvpP6mTh-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1328141208</pqid></control><display><type>article</type><title>Algorithms for polynomial spectral factorization and bounded-real balanced state space representations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rapisarda, P. ; Trentelman, H. L. ; Minh, H. B.</creator><creatorcontrib>Rapisarda, P. ; Trentelman, H. L. ; Minh, H. B.</creatorcontrib><description>We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, based on a technique to solve a generalization of the Nevanlinna interpolation problem.</description><identifier>ISSN: 0932-4194</identifier><identifier>EISSN: 1435-568X</identifier><identifier>DOI: 10.1007/s00498-012-0095-x</identifier><identifier>CODEN: MCSYEB</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithms ; Balancing ; Communications Engineering ; Computer science ; Control ; Factorization ; Interpolation ; Linear algebra ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Mechatronics ; Networks ; Original Article ; Polynomials ; Representations ; Robotics ; Spectra ; System theory ; Systems Theory ; Variables</subject><ispartof>Mathematics of control, signals, and systems, 2013-06, Vol.25 (2), p.231-255</ispartof><rights>Springer-Verlag London 2012</rights><rights>Springer-Verlag London 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-301b72c1817c168c0778de5027b8d8f06aab8e35672553c67d656c8a9aff5d763</citedby><cites>FETCH-LOGICAL-c392t-301b72c1817c168c0778de5027b8d8f06aab8e35672553c67d656c8a9aff5d763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00498-012-0095-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00498-012-0095-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rapisarda, P.</creatorcontrib><creatorcontrib>Trentelman, H. L.</creatorcontrib><creatorcontrib>Minh, H. B.</creatorcontrib><title>Algorithms for polynomial spectral factorization and bounded-real balanced state space representations</title><title>Mathematics of control, signals, and systems</title><addtitle>Math. Control Signals Syst</addtitle><description>We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, based on a technique to solve a generalization of the Nevanlinna interpolation problem.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Communications Engineering</subject><subject>Computer science</subject><subject>Control</subject><subject>Factorization</subject><subject>Interpolation</subject><subject>Linear algebra</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechatronics</subject><subject>Networks</subject><subject>Original Article</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Robotics</subject><subject>Spectra</subject><subject>System theory</subject><subject>Systems Theory</subject><subject>Variables</subject><issn>0932-4194</issn><issn>1435-568X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LJDEQhoO44OjuD9hbgxcvWavSnY8-ivixIHhR2FtIp6u1pafTJhlQf_1mHA8ieKqCep6X4mXsN8IfBNCnCaBpDQcUHKCV_GWPrbCpJZfK_NtnK2hrwRtsmwN2mNITAKDSuGLD2fQQ4pgf16kaQqyWML3OYT26qUoL-RzLMjifC_Pm8hjmys191YXN3FPPI5Vz5yY3e-qrlF2mojlPVaQlUqI5v0vpJ_sxuCnRr495xO4vL-7Or_nN7dXf87Mb7utWZF4Ddlp4NKg9KuNBa9OTBKE705sBlHOdoVoqLaSsvdK9ksob17phkL1W9RE72eUuMTxvKGW7HpOnqXxIYZMs1kqi0IBY0OMv6FPYxLl8VyhhsEEBplC4o3wMKUUa7BLHtYuvFsFum7e75m1p3m6bty_FETsnFXZ-oPgp-VvpP6mTh-I</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Rapisarda, P.</creator><creator>Trentelman, H. L.</creator><creator>Minh, H. B.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130601</creationdate><title>Algorithms for polynomial spectral factorization and bounded-real balanced state space representations</title><author>Rapisarda, P. ; Trentelman, H. L. ; Minh, H. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-301b72c1817c168c0778de5027b8d8f06aab8e35672553c67d656c8a9aff5d763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Communications Engineering</topic><topic>Computer science</topic><topic>Control</topic><topic>Factorization</topic><topic>Interpolation</topic><topic>Linear algebra</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechatronics</topic><topic>Networks</topic><topic>Original Article</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Robotics</topic><topic>Spectra</topic><topic>System theory</topic><topic>Systems Theory</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rapisarda, P.</creatorcontrib><creatorcontrib>Trentelman, H. L.</creatorcontrib><creatorcontrib>Minh, H. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Mathematics of control, signals, and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rapisarda, P.</au><au>Trentelman, H. L.</au><au>Minh, H. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms for polynomial spectral factorization and bounded-real balanced state space representations</atitle><jtitle>Mathematics of control, signals, and systems</jtitle><stitle>Math. Control Signals Syst</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>25</volume><issue>2</issue><spage>231</spage><epage>255</epage><pages>231-255</pages><issn>0932-4194</issn><eissn>1435-568X</eissn><coden>MCSYEB</coden><abstract>We illustrate an algorithm that starting from the image representation of a strictly bounded-real system computes a minimal balanced state variable, from which a minimal balanced state realization is readily obtained. The algorithm stems from an iterative procedure to compute a storage function, based on a technique to solve a generalization of the Nevanlinna interpolation problem.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s00498-012-0095-x</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0932-4194
ispartof Mathematics of control, signals, and systems, 2013-06, Vol.25 (2), p.231-255
issn 0932-4194
1435-568X
language eng
recordid cdi_proquest_miscellaneous_1365127011
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Balancing
Communications Engineering
Computer science
Control
Factorization
Interpolation
Linear algebra
Mathematical models
Mathematics
Mathematics and Statistics
Mechatronics
Networks
Original Article
Polynomials
Representations
Robotics
Spectra
System theory
Systems Theory
Variables
title Algorithms for polynomial spectral factorization and bounded-real balanced state space representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20for%20polynomial%20spectral%20factorization%20and%20bounded-real%20balanced%20state%20space%20representations&rft.jtitle=Mathematics%20of%20control,%20signals,%20and%20systems&rft.au=Rapisarda,%20P.&rft.date=2013-06-01&rft.volume=25&rft.issue=2&rft.spage=231&rft.epage=255&rft.pages=231-255&rft.issn=0932-4194&rft.eissn=1435-568X&rft.coden=MCSYEB&rft_id=info:doi/10.1007/s00498-012-0095-x&rft_dat=%3Cproquest_cross%3E2946952211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1328141208&rft_id=info:pmid/&rfr_iscdi=true