Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?

ABSTRACT The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical Prospecting 2013-05, Vol.61 (3), p.504-515
1. Verfasser: Mousa, Wail A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 3
container_start_page 504
container_title Geophysical Prospecting
container_volume 61
creator Mousa, Wail A.
description ABSTRACT The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted to design such IIR f−x extrapolation filters. The model reduction theory reduces the order of a given order system which, in this case, involves reducing a finite impulse response (FIR) f−x extrapolation filter system into an IIR f−x extrapolation filter system. This theory relies on decomposing the states of the given filter system into strong and weakly coupled sub‐systems, and then eliminating the weakly coupled states via singular value decomposition of the Hankel and the impulse response Gramian matrices. Simulation results indicate that IIR f−x filters can be obtained, which are stable from an IIR filter design point of view. Simulations also indicate that stable seismic impulse responses and synthetics can be obtained with a reduced system model order and, hence, less computational efforts with respect to the number of complex multiplications and additions per output sample. It is hoped that this study will open new possibilities for researchers to reconsider designing IIR f−x explicit depth extrapolation filters due to their expected computational savings and wavenumber response accuracy, when compared to the FIR f−x explicit depth extrapolation filters.
doi_str_mv 10.1111/j.1365-2478.2012.01058.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365126553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2941346561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4358-55f3097ffef9a7708e02bcf30d05be28ae6d5b1443cddd72e59ed290f681315c3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EEkvhP1jiwiXp2M4kWSSEUGmXorZUiI-j5U3GxYs3CXZCd_99nS7qgVN98ch-npE9L2NcQC7SOt7kQpWYyaKqcwlC5iAA63z3hC0eLp6yBYAosxokPmcvYtwAKEAsFuzXWaA_E3XNPouDaYjfmr9kHfmW024MZui9GV3f8Sm67oa7zrrOjcTddph8JB4oDn2XitbduNF4bp0fKcS33EXuRm7JRLf29P4le2ZNMl7924_Y97PTbyefsosvq_OTDxeZKRTWGaJVsKysJbs0VQU1gVw36awFXJOsDZUtrkVRqKZt20oSLqmVS7BlLZTARh2xN4e-Q-jTx-Koty425L3pqJ-inociZImoEvr6P3TTT6FLr0uURAUCZZGo-kA1oY8xkNVDcFsT9lqAniPQm_umep60niPQ9xHoXVLfHdRb52n_aE-vrr_OVfKzg-_iSLsH34TfuqxUhfrn1UqX8Bl_fLy81NfqDhYqnQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325301524</pqid></control><display><type>article</type><title>Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mousa, Wail A.</creator><creatorcontrib>Mousa, Wail A.</creatorcontrib><description>ABSTRACT The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted to design such IIR f−x extrapolation filters. The model reduction theory reduces the order of a given order system which, in this case, involves reducing a finite impulse response (FIR) f−x extrapolation filter system into an IIR f−x extrapolation filter system. This theory relies on decomposing the states of the given filter system into strong and weakly coupled sub‐systems, and then eliminating the weakly coupled states via singular value decomposition of the Hankel and the impulse response Gramian matrices. Simulation results indicate that IIR f−x filters can be obtained, which are stable from an IIR filter design point of view. Simulations also indicate that stable seismic impulse responses and synthetics can be obtained with a reduced system model order and, hence, less computational efforts with respect to the number of complex multiplications and additions per output sample. It is hoped that this study will open new possibilities for researchers to reconsider designing IIR f−x explicit depth extrapolation filters due to their expected computational savings and wavenumber response accuracy, when compared to the FIR f−x explicit depth extrapolation filters.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/j.1365-2478.2012.01058.x</identifier><identifier>CODEN: GPPRAR</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Computation ; Computer simulation ; Decomposition ; Design engineering ; Extrapolation ; IIR f−x filters ; Impulse response ; Mathematical analysis ; Model reduction ; Model reduction theory ; Monetary policy ; Seismic imaging ; Studies ; Wavefield extrapolation</subject><ispartof>Geophysical Prospecting, 2013-05, Vol.61 (3), p.504-515</ispartof><rights>2012 European Association of Geoscientists &amp; Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4358-55f3097ffef9a7708e02bcf30d05be28ae6d5b1443cddd72e59ed290f681315c3</citedby><cites>FETCH-LOGICAL-a4358-55f3097ffef9a7708e02bcf30d05be28ae6d5b1443cddd72e59ed290f681315c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2478.2012.01058.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2478.2012.01058.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Mousa, Wail A.</creatorcontrib><title>Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?</title><title>Geophysical Prospecting</title><description>ABSTRACT The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted to design such IIR f−x extrapolation filters. The model reduction theory reduces the order of a given order system which, in this case, involves reducing a finite impulse response (FIR) f−x extrapolation filter system into an IIR f−x extrapolation filter system. This theory relies on decomposing the states of the given filter system into strong and weakly coupled sub‐systems, and then eliminating the weakly coupled states via singular value decomposition of the Hankel and the impulse response Gramian matrices. Simulation results indicate that IIR f−x filters can be obtained, which are stable from an IIR filter design point of view. Simulations also indicate that stable seismic impulse responses and synthetics can be obtained with a reduced system model order and, hence, less computational efforts with respect to the number of complex multiplications and additions per output sample. It is hoped that this study will open new possibilities for researchers to reconsider designing IIR f−x explicit depth extrapolation filters due to their expected computational savings and wavenumber response accuracy, when compared to the FIR f−x explicit depth extrapolation filters.</description><subject>Computation</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Design engineering</subject><subject>Extrapolation</subject><subject>IIR f−x filters</subject><subject>Impulse response</subject><subject>Mathematical analysis</subject><subject>Model reduction</subject><subject>Model reduction theory</subject><subject>Monetary policy</subject><subject>Seismic imaging</subject><subject>Studies</subject><subject>Wavefield extrapolation</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EEkvhP1jiwiXp2M4kWSSEUGmXorZUiI-j5U3GxYs3CXZCd_99nS7qgVN98ch-npE9L2NcQC7SOt7kQpWYyaKqcwlC5iAA63z3hC0eLp6yBYAosxokPmcvYtwAKEAsFuzXWaA_E3XNPouDaYjfmr9kHfmW024MZui9GV3f8Sm67oa7zrrOjcTddph8JB4oDn2XitbduNF4bp0fKcS33EXuRm7JRLf29P4le2ZNMl7924_Y97PTbyefsosvq_OTDxeZKRTWGaJVsKysJbs0VQU1gVw36awFXJOsDZUtrkVRqKZt20oSLqmVS7BlLZTARh2xN4e-Q-jTx-Koty425L3pqJ-inociZImoEvr6P3TTT6FLr0uURAUCZZGo-kA1oY8xkNVDcFsT9lqAniPQm_umep60niPQ9xHoXVLfHdRb52n_aE-vrr_OVfKzg-_iSLsH34TfuqxUhfrn1UqX8Bl_fLy81NfqDhYqnQA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Mousa, Wail A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>201305</creationdate><title>Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?</title><author>Mousa, Wail A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4358-55f3097ffef9a7708e02bcf30d05be28ae6d5b1443cddd72e59ed290f681315c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computation</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Design engineering</topic><topic>Extrapolation</topic><topic>IIR f−x filters</topic><topic>Impulse response</topic><topic>Mathematical analysis</topic><topic>Model reduction</topic><topic>Model reduction theory</topic><topic>Monetary policy</topic><topic>Seismic imaging</topic><topic>Studies</topic><topic>Wavefield extrapolation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousa, Wail A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mousa, Wail A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?</atitle><jtitle>Geophysical Prospecting</jtitle><date>2013-05</date><risdate>2013</risdate><volume>61</volume><issue>3</issue><spage>504</spage><epage>515</epage><pages>504-515</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><coden>GPPRAR</coden><abstract>ABSTRACT The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted to design such IIR f−x extrapolation filters. The model reduction theory reduces the order of a given order system which, in this case, involves reducing a finite impulse response (FIR) f−x extrapolation filter system into an IIR f−x extrapolation filter system. This theory relies on decomposing the states of the given filter system into strong and weakly coupled sub‐systems, and then eliminating the weakly coupled states via singular value decomposition of the Hankel and the impulse response Gramian matrices. Simulation results indicate that IIR f−x filters can be obtained, which are stable from an IIR filter design point of view. Simulations also indicate that stable seismic impulse responses and synthetics can be obtained with a reduced system model order and, hence, less computational efforts with respect to the number of complex multiplications and additions per output sample. It is hoped that this study will open new possibilities for researchers to reconsider designing IIR f−x explicit depth extrapolation filters due to their expected computational savings and wavenumber response accuracy, when compared to the FIR f−x explicit depth extrapolation filters.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2478.2012.01058.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-8025
ispartof Geophysical Prospecting, 2013-05, Vol.61 (3), p.504-515
issn 0016-8025
1365-2478
language eng
recordid cdi_proquest_miscellaneous_1365126553
source Wiley Online Library Journals Frontfile Complete
subjects Computation
Computer simulation
Decomposition
Design engineering
Extrapolation
IIR f−x filters
Impulse response
Mathematical analysis
Model reduction
Model reduction theory
Monetary policy
Seismic imaging
Studies
Wavefield extrapolation
title Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-space%20wavefield%20extrapolation%20using%20infinite%20impulse%20response%20digital%20filters:%20is%20it%20feasible?&rft.jtitle=Geophysical%20Prospecting&rft.au=Mousa,%20Wail%20A.&rft.date=2013-05&rft.volume=61&rft.issue=3&rft.spage=504&rft.epage=515&rft.pages=504-515&rft.issn=0016-8025&rft.eissn=1365-2478&rft.coden=GPPRAR&rft_id=info:doi/10.1111/j.1365-2478.2012.01058.x&rft_dat=%3Cproquest_cross%3E2941346561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325301524&rft_id=info:pmid/&rfr_iscdi=true