Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?
ABSTRACT The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted...
Gespeichert in:
Veröffentlicht in: | Geophysical Prospecting 2013-05, Vol.61 (3), p.504-515 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | 3 |
container_start_page | 504 |
container_title | Geophysical Prospecting |
container_volume | 61 |
creator | Mousa, Wail A. |
description | ABSTRACT
The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted to design such IIR f−x extrapolation filters. The model reduction theory reduces the order of a given order system which, in this case, involves reducing a finite impulse response (FIR) f−x extrapolation filter system into an IIR f−x extrapolation filter system. This theory relies on decomposing the states of the given filter system into strong and weakly coupled sub‐systems, and then eliminating the weakly coupled states via singular value decomposition of the Hankel and the impulse response Gramian matrices. Simulation results indicate that IIR f−x filters can be obtained, which are stable from an IIR filter design point of view. Simulations also indicate that stable seismic impulse responses and synthetics can be obtained with a reduced system model order and, hence, less computational efforts with respect to the number of complex multiplications and additions per output sample. It is hoped that this study will open new possibilities for researchers to reconsider designing IIR f−x explicit depth extrapolation filters due to their expected computational savings and wavenumber response accuracy, when compared to the FIR f−x explicit depth extrapolation filters. |
doi_str_mv | 10.1111/j.1365-2478.2012.01058.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365126553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2941346561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4358-55f3097ffef9a7708e02bcf30d05be28ae6d5b1443cddd72e59ed290f681315c3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EEkvhP1jiwiXp2M4kWSSEUGmXorZUiI-j5U3GxYs3CXZCd_99nS7qgVN98ch-npE9L2NcQC7SOt7kQpWYyaKqcwlC5iAA63z3hC0eLp6yBYAosxokPmcvYtwAKEAsFuzXWaA_E3XNPouDaYjfmr9kHfmW024MZui9GV3f8Sm67oa7zrrOjcTddph8JB4oDn2XitbduNF4bp0fKcS33EXuRm7JRLf29P4le2ZNMl7924_Y97PTbyefsosvq_OTDxeZKRTWGaJVsKysJbs0VQU1gVw36awFXJOsDZUtrkVRqKZt20oSLqmVS7BlLZTARh2xN4e-Q-jTx-Koty425L3pqJ-inociZImoEvr6P3TTT6FLr0uURAUCZZGo-kA1oY8xkNVDcFsT9lqAniPQm_umep60niPQ9xHoXVLfHdRb52n_aE-vrr_OVfKzg-_iSLsH34TfuqxUhfrn1UqX8Bl_fLy81NfqDhYqnQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1325301524</pqid></control><display><type>article</type><title>Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mousa, Wail A.</creator><creatorcontrib>Mousa, Wail A.</creatorcontrib><description>ABSTRACT
The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted to design such IIR f−x extrapolation filters. The model reduction theory reduces the order of a given order system which, in this case, involves reducing a finite impulse response (FIR) f−x extrapolation filter system into an IIR f−x extrapolation filter system. This theory relies on decomposing the states of the given filter system into strong and weakly coupled sub‐systems, and then eliminating the weakly coupled states via singular value decomposition of the Hankel and the impulse response Gramian matrices. Simulation results indicate that IIR f−x filters can be obtained, which are stable from an IIR filter design point of view. Simulations also indicate that stable seismic impulse responses and synthetics can be obtained with a reduced system model order and, hence, less computational efforts with respect to the number of complex multiplications and additions per output sample. It is hoped that this study will open new possibilities for researchers to reconsider designing IIR f−x explicit depth extrapolation filters due to their expected computational savings and wavenumber response accuracy, when compared to the FIR f−x explicit depth extrapolation filters.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/j.1365-2478.2012.01058.x</identifier><identifier>CODEN: GPPRAR</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Computation ; Computer simulation ; Decomposition ; Design engineering ; Extrapolation ; IIR f−x filters ; Impulse response ; Mathematical analysis ; Model reduction ; Model reduction theory ; Monetary policy ; Seismic imaging ; Studies ; Wavefield extrapolation</subject><ispartof>Geophysical Prospecting, 2013-05, Vol.61 (3), p.504-515</ispartof><rights>2012 European Association of Geoscientists & Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4358-55f3097ffef9a7708e02bcf30d05be28ae6d5b1443cddd72e59ed290f681315c3</citedby><cites>FETCH-LOGICAL-a4358-55f3097ffef9a7708e02bcf30d05be28ae6d5b1443cddd72e59ed290f681315c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2478.2012.01058.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2478.2012.01058.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Mousa, Wail A.</creatorcontrib><title>Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?</title><title>Geophysical Prospecting</title><description>ABSTRACT
The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted to design such IIR f−x extrapolation filters. The model reduction theory reduces the order of a given order system which, in this case, involves reducing a finite impulse response (FIR) f−x extrapolation filter system into an IIR f−x extrapolation filter system. This theory relies on decomposing the states of the given filter system into strong and weakly coupled sub‐systems, and then eliminating the weakly coupled states via singular value decomposition of the Hankel and the impulse response Gramian matrices. Simulation results indicate that IIR f−x filters can be obtained, which are stable from an IIR filter design point of view. Simulations also indicate that stable seismic impulse responses and synthetics can be obtained with a reduced system model order and, hence, less computational efforts with respect to the number of complex multiplications and additions per output sample. It is hoped that this study will open new possibilities for researchers to reconsider designing IIR f−x explicit depth extrapolation filters due to their expected computational savings and wavenumber response accuracy, when compared to the FIR f−x explicit depth extrapolation filters.</description><subject>Computation</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Design engineering</subject><subject>Extrapolation</subject><subject>IIR f−x filters</subject><subject>Impulse response</subject><subject>Mathematical analysis</subject><subject>Model reduction</subject><subject>Model reduction theory</subject><subject>Monetary policy</subject><subject>Seismic imaging</subject><subject>Studies</subject><subject>Wavefield extrapolation</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EEkvhP1jiwiXp2M4kWSSEUGmXorZUiI-j5U3GxYs3CXZCd_99nS7qgVN98ch-npE9L2NcQC7SOt7kQpWYyaKqcwlC5iAA63z3hC0eLp6yBYAosxokPmcvYtwAKEAsFuzXWaA_E3XNPouDaYjfmr9kHfmW024MZui9GV3f8Sm67oa7zrrOjcTddph8JB4oDn2XitbduNF4bp0fKcS33EXuRm7JRLf29P4le2ZNMl7924_Y97PTbyefsosvq_OTDxeZKRTWGaJVsKysJbs0VQU1gVw36awFXJOsDZUtrkVRqKZt20oSLqmVS7BlLZTARh2xN4e-Q-jTx-Koty425L3pqJ-inociZImoEvr6P3TTT6FLr0uURAUCZZGo-kA1oY8xkNVDcFsT9lqAniPQm_umep60niPQ9xHoXVLfHdRb52n_aE-vrr_OVfKzg-_iSLsH34TfuqxUhfrn1UqX8Bl_fLy81NfqDhYqnQA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Mousa, Wail A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>201305</creationdate><title>Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?</title><author>Mousa, Wail A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4358-55f3097ffef9a7708e02bcf30d05be28ae6d5b1443cddd72e59ed290f681315c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computation</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Design engineering</topic><topic>Extrapolation</topic><topic>IIR f−x filters</topic><topic>Impulse response</topic><topic>Mathematical analysis</topic><topic>Model reduction</topic><topic>Model reduction theory</topic><topic>Monetary policy</topic><topic>Seismic imaging</topic><topic>Studies</topic><topic>Wavefield extrapolation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousa, Wail A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mousa, Wail A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible?</atitle><jtitle>Geophysical Prospecting</jtitle><date>2013-05</date><risdate>2013</risdate><volume>61</volume><issue>3</issue><spage>504</spage><epage>515</epage><pages>504-515</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><coden>GPPRAR</coden><abstract>ABSTRACT
The purpose of this paper is to study the possibility of performing practically stable and efficient frequency‐space (f−x) wavefield extrapolation for the application of seismic imaging and datuming via infinite impulse response (IIR) filters. The model reduction control theory was adopted to design such IIR f−x extrapolation filters. The model reduction theory reduces the order of a given order system which, in this case, involves reducing a finite impulse response (FIR) f−x extrapolation filter system into an IIR f−x extrapolation filter system. This theory relies on decomposing the states of the given filter system into strong and weakly coupled sub‐systems, and then eliminating the weakly coupled states via singular value decomposition of the Hankel and the impulse response Gramian matrices. Simulation results indicate that IIR f−x filters can be obtained, which are stable from an IIR filter design point of view. Simulations also indicate that stable seismic impulse responses and synthetics can be obtained with a reduced system model order and, hence, less computational efforts with respect to the number of complex multiplications and additions per output sample. It is hoped that this study will open new possibilities for researchers to reconsider designing IIR f−x explicit depth extrapolation filters due to their expected computational savings and wavenumber response accuracy, when compared to the FIR f−x explicit depth extrapolation filters.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2478.2012.01058.x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8025 |
ispartof | Geophysical Prospecting, 2013-05, Vol.61 (3), p.504-515 |
issn | 0016-8025 1365-2478 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365126553 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computation Computer simulation Decomposition Design engineering Extrapolation IIR f−x filters Impulse response Mathematical analysis Model reduction Model reduction theory Monetary policy Seismic imaging Studies Wavefield extrapolation |
title | Frequency-space wavefield extrapolation using infinite impulse response digital filters: is it feasible? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-space%20wavefield%20extrapolation%20using%20infinite%20impulse%20response%20digital%20filters:%20is%20it%20feasible?&rft.jtitle=Geophysical%20Prospecting&rft.au=Mousa,%20Wail%20A.&rft.date=2013-05&rft.volume=61&rft.issue=3&rft.spage=504&rft.epage=515&rft.pages=504-515&rft.issn=0016-8025&rft.eissn=1365-2478&rft.coden=GPPRAR&rft_id=info:doi/10.1111/j.1365-2478.2012.01058.x&rft_dat=%3Cproquest_cross%3E2941346561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1325301524&rft_id=info:pmid/&rfr_iscdi=true |