Thermal analysis of locomotive wheel-mounted brake disc
In recent decades the improvement of the braking performances are required due to high speed of trains. The generated frictional heat, during braking operation causes several negative effects on the brake system such as brake fade, premature wear, thermal cracks and disc thickness variation. It is t...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2013-03, Vol.51 (1-2), p.948-952 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 952 |
---|---|
container_issue | 1-2 |
container_start_page | 948 |
container_title | Applied thermal engineering |
container_volume | 51 |
creator | Ghadimi, B. Kowsary, F. Khorami, M. |
description | In recent decades the improvement of the braking performances are required due to high speed of trains. The generated frictional heat, during braking operation causes several negative effects on the brake system such as brake fade, premature wear, thermal cracks and disc thickness variation. It is then important to determine the temperature field of the brake disc. In the present work, thermal analysis of the wheel-mounted brake disc R920K for the ER24PC locomotive is investigated. The brake disc and fluid zone are simulated as a 3D model with a thermal coupling boundary condition. The braking process is simulated in laboratory and the experimental data are used to verify the simulation results. During the braking, the maximum temperature was observed in the middle of braking process instead of the braking end point. Moreover, a large lagging was observed for fins temperature which renders no cooling at the beginning of the braking.
► At each time step the local HTC was calculated, and used for disc thermal analysis. ► Numerical results compare well with experimental data. ► Lagging effect renders no cooling at the beginning of the braking. ► Disc surface temperatures increased with increasing braking time, and then decreased. |
doi_str_mv | 10.1016/j.applthermaleng.2012.10.051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365119006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431112007107</els_id><sourcerecordid>1365119006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-36fada2ff607bd3549e2c2d57fd9cb45c44cc2a6eb205cfe49952a4dfea469ca3</originalsourceid><addsrcrecordid>eNqNkD9PwzAUxDOARCl8hwwgsST4b0IkFlRRQKrEUmbr1X6mLk4c7LSIb0-qVkhsTG-4393pXZZdUVJSQqvbTQl974c1xhY8du8lI5SNUkkkPckmlMumEJzSs-w8pQ0ZxbtaTLJ6eXDk0IH_Ti7lweY-6NCGwe0w_1oj-qIN225Ak68ifGBuXNIX2akFn_DyeKfZ2_xxOXsuFq9PL7OHRaF5w4eCVxYMMGsrUq8Ml6JBppmRtTWNXgmphdCaQYUrRqS2KJpGMhDGIoiq0cCn2c0ht4_hc4tpUO3Yjt5Dh2GbFOWVpLQhpBrR-wOqY0gpolV9dC3Eb0WJ2m-kNurvRmq_0V4dNxrt18cmSBq8jdBpl34zWE0EZ0yO3PzA4fj2zmFUSTvsNBoXUQ_KBPe_wh95c4ip</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365119006</pqid></control><display><type>article</type><title>Thermal analysis of locomotive wheel-mounted brake disc</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ghadimi, B. ; Kowsary, F. ; Khorami, M.</creator><creatorcontrib>Ghadimi, B. ; Kowsary, F. ; Khorami, M.</creatorcontrib><description>In recent decades the improvement of the braking performances are required due to high speed of trains. The generated frictional heat, during braking operation causes several negative effects on the brake system such as brake fade, premature wear, thermal cracks and disc thickness variation. It is then important to determine the temperature field of the brake disc. In the present work, thermal analysis of the wheel-mounted brake disc R920K for the ER24PC locomotive is investigated. The brake disc and fluid zone are simulated as a 3D model with a thermal coupling boundary condition. The braking process is simulated in laboratory and the experimental data are used to verify the simulation results. During the braking, the maximum temperature was observed in the middle of braking process instead of the braking end point. Moreover, a large lagging was observed for fins temperature which renders no cooling at the beginning of the braking.
► At each time step the local HTC was calculated, and used for disc thermal analysis. ► Numerical results compare well with experimental data. ► Lagging effect renders no cooling at the beginning of the braking. ► Disc surface temperatures increased with increasing braking time, and then decreased.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2012.10.051</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Brakes ; Braking ; Computer simulation ; Discs ; Disks ; Exact sciences and technology ; Ground, air and sea transportation, marine construction ; Heat transfer ; Locomotive ; Locomotives ; Pad ; Railway transportation and traffic ; Thermal analysis ; Thermal engineering ; Wheel-mounted brake disc</subject><ispartof>Applied thermal engineering, 2013-03, Vol.51 (1-2), p.948-952</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-36fada2ff607bd3549e2c2d57fd9cb45c44cc2a6eb205cfe49952a4dfea469ca3</citedby><cites>FETCH-LOGICAL-c393t-36fada2ff607bd3549e2c2d57fd9cb45c44cc2a6eb205cfe49952a4dfea469ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2012.10.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27043225$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghadimi, B.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><creatorcontrib>Khorami, M.</creatorcontrib><title>Thermal analysis of locomotive wheel-mounted brake disc</title><title>Applied thermal engineering</title><description>In recent decades the improvement of the braking performances are required due to high speed of trains. The generated frictional heat, during braking operation causes several negative effects on the brake system such as brake fade, premature wear, thermal cracks and disc thickness variation. It is then important to determine the temperature field of the brake disc. In the present work, thermal analysis of the wheel-mounted brake disc R920K for the ER24PC locomotive is investigated. The brake disc and fluid zone are simulated as a 3D model with a thermal coupling boundary condition. The braking process is simulated in laboratory and the experimental data are used to verify the simulation results. During the braking, the maximum temperature was observed in the middle of braking process instead of the braking end point. Moreover, a large lagging was observed for fins temperature which renders no cooling at the beginning of the braking.
► At each time step the local HTC was calculated, and used for disc thermal analysis. ► Numerical results compare well with experimental data. ► Lagging effect renders no cooling at the beginning of the braking. ► Disc surface temperatures increased with increasing braking time, and then decreased.</description><subject>Applied sciences</subject><subject>Brakes</subject><subject>Braking</subject><subject>Computer simulation</subject><subject>Discs</subject><subject>Disks</subject><subject>Exact sciences and technology</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Heat transfer</subject><subject>Locomotive</subject><subject>Locomotives</subject><subject>Pad</subject><subject>Railway transportation and traffic</subject><subject>Thermal analysis</subject><subject>Thermal engineering</subject><subject>Wheel-mounted brake disc</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkD9PwzAUxDOARCl8hwwgsST4b0IkFlRRQKrEUmbr1X6mLk4c7LSIb0-qVkhsTG-4393pXZZdUVJSQqvbTQl974c1xhY8du8lI5SNUkkkPckmlMumEJzSs-w8pQ0ZxbtaTLJ6eXDk0IH_Ti7lweY-6NCGwe0w_1oj-qIN225Ak68ifGBuXNIX2akFn_DyeKfZ2_xxOXsuFq9PL7OHRaF5w4eCVxYMMGsrUq8Ml6JBppmRtTWNXgmphdCaQYUrRqS2KJpGMhDGIoiq0cCn2c0ht4_hc4tpUO3Yjt5Dh2GbFOWVpLQhpBrR-wOqY0gpolV9dC3Eb0WJ2m-kNurvRmq_0V4dNxrt18cmSBq8jdBpl34zWE0EZ0yO3PzA4fj2zmFUSTvsNBoXUQ_KBPe_wh95c4ip</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Ghadimi, B.</creator><creator>Kowsary, F.</creator><creator>Khorami, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130301</creationdate><title>Thermal analysis of locomotive wheel-mounted brake disc</title><author>Ghadimi, B. ; Kowsary, F. ; Khorami, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-36fada2ff607bd3549e2c2d57fd9cb45c44cc2a6eb205cfe49952a4dfea469ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Brakes</topic><topic>Braking</topic><topic>Computer simulation</topic><topic>Discs</topic><topic>Disks</topic><topic>Exact sciences and technology</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Heat transfer</topic><topic>Locomotive</topic><topic>Locomotives</topic><topic>Pad</topic><topic>Railway transportation and traffic</topic><topic>Thermal analysis</topic><topic>Thermal engineering</topic><topic>Wheel-mounted brake disc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghadimi, B.</creatorcontrib><creatorcontrib>Kowsary, F.</creatorcontrib><creatorcontrib>Khorami, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghadimi, B.</au><au>Kowsary, F.</au><au>Khorami, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal analysis of locomotive wheel-mounted brake disc</atitle><jtitle>Applied thermal engineering</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>51</volume><issue>1-2</issue><spage>948</spage><epage>952</epage><pages>948-952</pages><issn>1359-4311</issn><abstract>In recent decades the improvement of the braking performances are required due to high speed of trains. The generated frictional heat, during braking operation causes several negative effects on the brake system such as brake fade, premature wear, thermal cracks and disc thickness variation. It is then important to determine the temperature field of the brake disc. In the present work, thermal analysis of the wheel-mounted brake disc R920K for the ER24PC locomotive is investigated. The brake disc and fluid zone are simulated as a 3D model with a thermal coupling boundary condition. The braking process is simulated in laboratory and the experimental data are used to verify the simulation results. During the braking, the maximum temperature was observed in the middle of braking process instead of the braking end point. Moreover, a large lagging was observed for fins temperature which renders no cooling at the beginning of the braking.
► At each time step the local HTC was calculated, and used for disc thermal analysis. ► Numerical results compare well with experimental data. ► Lagging effect renders no cooling at the beginning of the braking. ► Disc surface temperatures increased with increasing braking time, and then decreased.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2012.10.051</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2013-03, Vol.51 (1-2), p.948-952 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365119006 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Applied sciences Brakes Braking Computer simulation Discs Disks Exact sciences and technology Ground, air and sea transportation, marine construction Heat transfer Locomotive Locomotives Pad Railway transportation and traffic Thermal analysis Thermal engineering Wheel-mounted brake disc |
title | Thermal analysis of locomotive wheel-mounted brake disc |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20analysis%20of%20locomotive%20wheel-mounted%20brake%20disc&rft.jtitle=Applied%20thermal%20engineering&rft.au=Ghadimi,%20B.&rft.date=2013-03-01&rft.volume=51&rft.issue=1-2&rft.spage=948&rft.epage=952&rft.pages=948-952&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2012.10.051&rft_dat=%3Cproquest_cross%3E1365119006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365119006&rft_id=info:pmid/&rft_els_id=S1359431112007107&rfr_iscdi=true |