Monte Carlo simulation for moment-independent sensitivity analysis

The moment-independent sensitivity analysis (SA) is one of the most popular SA techniques. It aims at measuring the contribution of input variable(s) to the probability density function (PDF) of model output. However, compared with the variance-based one, robust and efficient methods are less availa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2013-02, Vol.110, p.60-67
Hauptverfasser: Wei, Pengfei, Lu, Zhenzhou, Yuan, Xiukai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 60
container_title Reliability engineering & system safety
container_volume 110
creator Wei, Pengfei
Lu, Zhenzhou
Yuan, Xiukai
description The moment-independent sensitivity analysis (SA) is one of the most popular SA techniques. It aims at measuring the contribution of input variable(s) to the probability density function (PDF) of model output. However, compared with the variance-based one, robust and efficient methods are less available for computing the moment-independent SA indices (also called delta indices). In this paper, the Monte Carlo simulation (MCS) methods for moment-independent SA are investigated. A double-loop MCS method, which has the advantages of high accuracy and easy programming, is firstly developed. Then, to reduce the computational cost, a single-loop MCS method is proposed. The later method has several advantages. First, only a set of samples is needed for computing all the indices, thus it can overcome the problem of “curse of dimensionality”. Second, it is suitable for problems with dependent inputs. Third, it is purely based on model output evaluation and density estimation, thus can be used for model with high order (>2) interactions. At last, several numerical examples are introduced to demonstrate the advantages of the proposed methods.
doi_str_mv 10.1016/j.ress.2012.09.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365116484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832012001858</els_id><sourcerecordid>1365116484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-662fcb25a579eb314530a064ff2fe5dfe1bd32780fa864d6bf2454ad80a73e0d3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJodu0f6AnXwq52B1JlixDLumSfkBKL-1ZaOURaLGljUYb2H9fL7v0mMvM5XnfYR7GPnHoOHD9Zd8VJOoEcNHB2AGoN2zDzTC2YKS-YRsYFW-NFPCOvSfaA0A_qmHDvv7KqWKzdWXODcXlOLsac2pCLs2SF0y1jWnCA64j1YYwUazxJdZT45KbTxTpA3sb3Ez48bpv2d9vj3-2P9qn399_bh-eWi-1rK3WIvidUE4NI-4k75UEB7oPQQRUU0C-m6QYDARndD_pXRC96t1kwA0SYZK37O7Seyj5-YhU7RLJ4zy7hPlIlkutONe96VdUXFBfMlHBYA8lLq6cLAd7Fmb39izMnoVZGO0qbA19vvY78m4OxSUf6X9SaL12G7Ny9xcO12dfIhZLPmLyOMWCvtopx9fO_AOK_oI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365116484</pqid></control><display><type>article</type><title>Monte Carlo simulation for moment-independent sensitivity analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Wei, Pengfei ; Lu, Zhenzhou ; Yuan, Xiukai</creator><creatorcontrib>Wei, Pengfei ; Lu, Zhenzhou ; Yuan, Xiukai</creatorcontrib><description>The moment-independent sensitivity analysis (SA) is one of the most popular SA techniques. It aims at measuring the contribution of input variable(s) to the probability density function (PDF) of model output. However, compared with the variance-based one, robust and efficient methods are less available for computing the moment-independent SA indices (also called delta indices). In this paper, the Monte Carlo simulation (MCS) methods for moment-independent SA are investigated. A double-loop MCS method, which has the advantages of high accuracy and easy programming, is firstly developed. Then, to reduce the computational cost, a single-loop MCS method is proposed. The later method has several advantages. First, only a set of samples is needed for computing all the indices, thus it can overcome the problem of “curse of dimensionality”. Second, it is suitable for problems with dependent inputs. Third, it is purely based on model output evaluation and density estimation, thus can be used for model with high order (&gt;2) interactions. At last, several numerical examples are introduced to demonstrate the advantages of the proposed methods.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2012.09.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computation ; Computational efficiency ; Computer simulation ; Delta indices ; Density ; Exact sciences and technology ; Kernel density estimation ; Mathematical models ; Mathematics ; Moment-independent sensitivity analysis ; Monte Carlo methods ; Monte Carlo simulation ; Nonparametric inference ; Probability and statistics ; Probability density functions ; Sciences and techniques of general use ; Sensitivity analysis ; Statistics</subject><ispartof>Reliability engineering &amp; system safety, 2013-02, Vol.110, p.60-67</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-662fcb25a579eb314530a064ff2fe5dfe1bd32780fa864d6bf2454ad80a73e0d3</citedby><cites>FETCH-LOGICAL-c363t-662fcb25a579eb314530a064ff2fe5dfe1bd32780fa864d6bf2454ad80a73e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ress.2012.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26664888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Lu, Zhenzhou</creatorcontrib><creatorcontrib>Yuan, Xiukai</creatorcontrib><title>Monte Carlo simulation for moment-independent sensitivity analysis</title><title>Reliability engineering &amp; system safety</title><description>The moment-independent sensitivity analysis (SA) is one of the most popular SA techniques. It aims at measuring the contribution of input variable(s) to the probability density function (PDF) of model output. However, compared with the variance-based one, robust and efficient methods are less available for computing the moment-independent SA indices (also called delta indices). In this paper, the Monte Carlo simulation (MCS) methods for moment-independent SA are investigated. A double-loop MCS method, which has the advantages of high accuracy and easy programming, is firstly developed. Then, to reduce the computational cost, a single-loop MCS method is proposed. The later method has several advantages. First, only a set of samples is needed for computing all the indices, thus it can overcome the problem of “curse of dimensionality”. Second, it is suitable for problems with dependent inputs. Third, it is purely based on model output evaluation and density estimation, thus can be used for model with high order (&gt;2) interactions. At last, several numerical examples are introduced to demonstrate the advantages of the proposed methods.</description><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Delta indices</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Kernel density estimation</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Moment-independent sensitivity analysis</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Probability density functions</subject><subject>Sciences and techniques of general use</subject><subject>Sensitivity analysis</subject><subject>Statistics</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJodu0f6AnXwq52B1JlixDLumSfkBKL-1ZaOURaLGljUYb2H9fL7v0mMvM5XnfYR7GPnHoOHD9Zd8VJOoEcNHB2AGoN2zDzTC2YKS-YRsYFW-NFPCOvSfaA0A_qmHDvv7KqWKzdWXODcXlOLsac2pCLs2SF0y1jWnCA64j1YYwUazxJdZT45KbTxTpA3sb3Ez48bpv2d9vj3-2P9qn399_bh-eWi-1rK3WIvidUE4NI-4k75UEB7oPQQRUU0C-m6QYDARndD_pXRC96t1kwA0SYZK37O7Seyj5-YhU7RLJ4zy7hPlIlkutONe96VdUXFBfMlHBYA8lLq6cLAd7Fmb39izMnoVZGO0qbA19vvY78m4OxSUf6X9SaL12G7Ny9xcO12dfIhZLPmLyOMWCvtopx9fO_AOK_oI4</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Wei, Pengfei</creator><creator>Lu, Zhenzhou</creator><creator>Yuan, Xiukai</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20130201</creationdate><title>Monte Carlo simulation for moment-independent sensitivity analysis</title><author>Wei, Pengfei ; Lu, Zhenzhou ; Yuan, Xiukai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-662fcb25a579eb314530a064ff2fe5dfe1bd32780fa864d6bf2454ad80a73e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Delta indices</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Kernel density estimation</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Moment-independent sensitivity analysis</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Probability density functions</topic><topic>Sciences and techniques of general use</topic><topic>Sensitivity analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Pengfei</creatorcontrib><creatorcontrib>Lu, Zhenzhou</creatorcontrib><creatorcontrib>Yuan, Xiukai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Pengfei</au><au>Lu, Zhenzhou</au><au>Yuan, Xiukai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation for moment-independent sensitivity analysis</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>110</volume><spage>60</spage><epage>67</epage><pages>60-67</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>The moment-independent sensitivity analysis (SA) is one of the most popular SA techniques. It aims at measuring the contribution of input variable(s) to the probability density function (PDF) of model output. However, compared with the variance-based one, robust and efficient methods are less available for computing the moment-independent SA indices (also called delta indices). In this paper, the Monte Carlo simulation (MCS) methods for moment-independent SA are investigated. A double-loop MCS method, which has the advantages of high accuracy and easy programming, is firstly developed. Then, to reduce the computational cost, a single-loop MCS method is proposed. The later method has several advantages. First, only a set of samples is needed for computing all the indices, thus it can overcome the problem of “curse of dimensionality”. Second, it is suitable for problems with dependent inputs. Third, it is purely based on model output evaluation and density estimation, thus can be used for model with high order (&gt;2) interactions. At last, several numerical examples are introduced to demonstrate the advantages of the proposed methods.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2012.09.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2013-02, Vol.110, p.60-67
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_miscellaneous_1365116484
source Elsevier ScienceDirect Journals
subjects Computation
Computational efficiency
Computer simulation
Delta indices
Density
Exact sciences and technology
Kernel density estimation
Mathematical models
Mathematics
Moment-independent sensitivity analysis
Monte Carlo methods
Monte Carlo simulation
Nonparametric inference
Probability and statistics
Probability density functions
Sciences and techniques of general use
Sensitivity analysis
Statistics
title Monte Carlo simulation for moment-independent sensitivity analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20for%20moment-independent%20sensitivity%20analysis&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Wei,%20Pengfei&rft.date=2013-02-01&rft.volume=110&rft.spage=60&rft.epage=67&rft.pages=60-67&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2012.09.005&rft_dat=%3Cproquest_cross%3E1365116484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365116484&rft_id=info:pmid/&rft_els_id=S0951832012001858&rfr_iscdi=true