Construction of micropolar continua from the asymptotic homogenization of beam lattices

► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations. The asy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2012-12, Vol.112-113, p.354-363
Hauptverfasser: Dos Reis, F., Ganghoffer, J.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue
container_start_page 354
container_title Computers & structures
container_volume 112-113
creator Dos Reis, F.
Ganghoffer, J.F.
description ► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations. The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices endowed with a central symmetry, for which there is no coupling between stress and curvature. From the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of the effective continuum. The homogenized moduli are found in close agreement with the moduli obtained from finite element simulations performed over extended lattices. The obtained results are exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, leading to a dominant micropolar effect under bending at the macroscopic scale.
doi_str_mv 10.1016/j.compstruc.2012.08.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365116131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794912001940</els_id><sourcerecordid>1365116131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-a07d2f61a553ad0acfb1bb2359116a4af1682277cce911196fc3a56217f5cc0f3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDOSCxCXBdhInOVYVf1IlLiCO1nZjU1dJHGwXqTw9Li29clpp95tZzRByzWjGKBN36wxtP_rgNphxynhG64xScUImrK6alPMiPyUTSosyrZqiOScX3q9pJApKJ-R9bodfbTB2SKxOeoPOjrYDl6Adghk2kGhn-ySsVAJ-24_BBoPJyvb2Qw3mG_6USwV90kGIV-UvyZmGzqurw5ySt4f71_lTunh5fJ7PFikWRRFSoFXLtWBQljm0FFAv2XLJ87JhTEABmoma86pCVHHDGqExh1JwVukSkep8Sm73vqOznxvlg-yNR9V1MCi78ZLlooxWLGcRrfZoDOi9U1qOzvTgtpJRuatSruWxSrmrUtJaxqKi8ubwBDxCpx0MaPxRzkXZVI3IIzfbcyom_jLKSY9GDaha4xQG2Vrz768fEL2QWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365116131</pqid></control><display><type>article</type><title>Construction of micropolar continua from the asymptotic homogenization of beam lattices</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dos Reis, F. ; Ganghoffer, J.F.</creator><creatorcontrib>Dos Reis, F. ; Ganghoffer, J.F.</creatorcontrib><description>► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations. The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices endowed with a central symmetry, for which there is no coupling between stress and curvature. From the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of the effective continuum. The homogenized moduli are found in close agreement with the moduli obtained from finite element simulations performed over extended lattices. The obtained results are exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, leading to a dominant micropolar effect under bending at the macroscopic scale.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2012.08.006</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Asymptotic expansions ; Asymptotic properties ; Beam lattices ; Beams (structural) ; Computer simulation ; Continuums ; Discrete homogenization ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Homogenizing ; Lattices ; Mathematical analysis ; Micropolar continuum ; Microstructure effects ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computers &amp; structures, 2012-12, Vol.112-113, p.354-363</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-a07d2f61a553ad0acfb1bb2359116a4af1682277cce911196fc3a56217f5cc0f3</citedby><cites>FETCH-LOGICAL-c444t-a07d2f61a553ad0acfb1bb2359116a4af1682277cce911196fc3a56217f5cc0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2012.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26597963$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dos Reis, F.</creatorcontrib><creatorcontrib>Ganghoffer, J.F.</creatorcontrib><title>Construction of micropolar continua from the asymptotic homogenization of beam lattices</title><title>Computers &amp; structures</title><description>► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations. The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices endowed with a central symmetry, for which there is no coupling between stress and curvature. From the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of the effective continuum. The homogenized moduli are found in close agreement with the moduli obtained from finite element simulations performed over extended lattices. The obtained results are exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, leading to a dominant micropolar effect under bending at the macroscopic scale.</description><subject>Algorithms</subject><subject>Asymptotic expansions</subject><subject>Asymptotic properties</subject><subject>Beam lattices</subject><subject>Beams (structural)</subject><subject>Computer simulation</subject><subject>Continuums</subject><subject>Discrete homogenization</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Homogenizing</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Micropolar continuum</subject><subject>Microstructure effects</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDOSCxCXBdhInOVYVf1IlLiCO1nZjU1dJHGwXqTw9Li29clpp95tZzRByzWjGKBN36wxtP_rgNphxynhG64xScUImrK6alPMiPyUTSosyrZqiOScX3q9pJApKJ-R9bodfbTB2SKxOeoPOjrYDl6Adghk2kGhn-ySsVAJ-24_BBoPJyvb2Qw3mG_6USwV90kGIV-UvyZmGzqurw5ySt4f71_lTunh5fJ7PFikWRRFSoFXLtWBQljm0FFAv2XLJ87JhTEABmoma86pCVHHDGqExh1JwVukSkep8Sm73vqOznxvlg-yNR9V1MCi78ZLlooxWLGcRrfZoDOi9U1qOzvTgtpJRuatSruWxSrmrUtJaxqKi8ubwBDxCpx0MaPxRzkXZVI3IIzfbcyom_jLKSY9GDaha4xQG2Vrz768fEL2QWA</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Dos Reis, F.</creator><creator>Ganghoffer, J.F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121201</creationdate><title>Construction of micropolar continua from the asymptotic homogenization of beam lattices</title><author>Dos Reis, F. ; Ganghoffer, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-a07d2f61a553ad0acfb1bb2359116a4af1682277cce911196fc3a56217f5cc0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Asymptotic expansions</topic><topic>Asymptotic properties</topic><topic>Beam lattices</topic><topic>Beams (structural)</topic><topic>Computer simulation</topic><topic>Continuums</topic><topic>Discrete homogenization</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Homogenizing</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Micropolar continuum</topic><topic>Microstructure effects</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dos Reis, F.</creatorcontrib><creatorcontrib>Ganghoffer, J.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dos Reis, F.</au><au>Ganghoffer, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of micropolar continua from the asymptotic homogenization of beam lattices</atitle><jtitle>Computers &amp; structures</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>112-113</volume><spage>354</spage><epage>363</epage><pages>354-363</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations. The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices endowed with a central symmetry, for which there is no coupling between stress and curvature. From the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of the effective continuum. The homogenized moduli are found in close agreement with the moduli obtained from finite element simulations performed over extended lattices. The obtained results are exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, leading to a dominant micropolar effect under bending at the macroscopic scale.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2012.08.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2012-12, Vol.112-113, p.354-363
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_1365116131
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Asymptotic expansions
Asymptotic properties
Beam lattices
Beams (structural)
Computer simulation
Continuums
Discrete homogenization
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Homogenizing
Lattices
Mathematical analysis
Micropolar continuum
Microstructure effects
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title Construction of micropolar continua from the asymptotic homogenization of beam lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20micropolar%20continua%20from%20the%20asymptotic%20homogenization%20of%20beam%20lattices&rft.jtitle=Computers%20&%20structures&rft.au=Dos%20Reis,%20F.&rft.date=2012-12-01&rft.volume=112-113&rft.spage=354&rft.epage=363&rft.pages=354-363&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2012.08.006&rft_dat=%3Cproquest_cross%3E1365116131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365116131&rft_id=info:pmid/&rft_els_id=S0045794912001940&rfr_iscdi=true