Construction of micropolar continua from the asymptotic homogenization of beam lattices
► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations. The asy...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2012-12, Vol.112-113, p.354-363 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | |
container_start_page | 354 |
container_title | Computers & structures |
container_volume | 112-113 |
creator | Dos Reis, F. Ganghoffer, J.F. |
description | ► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations.
The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices endowed with a central symmetry, for which there is no coupling between stress and curvature. From the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of the effective continuum. The homogenized moduli are found in close agreement with the moduli obtained from finite element simulations performed over extended lattices. The obtained results are exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, leading to a dominant micropolar effect under bending at the macroscopic scale. |
doi_str_mv | 10.1016/j.compstruc.2012.08.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365116131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794912001940</els_id><sourcerecordid>1365116131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-a07d2f61a553ad0acfb1bb2359116a4af1682277cce911196fc3a56217f5cc0f3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDOSCxCXBdhInOVYVf1IlLiCO1nZjU1dJHGwXqTw9Li29clpp95tZzRByzWjGKBN36wxtP_rgNphxynhG64xScUImrK6alPMiPyUTSosyrZqiOScX3q9pJApKJ-R9bodfbTB2SKxOeoPOjrYDl6Adghk2kGhn-ySsVAJ-24_BBoPJyvb2Qw3mG_6USwV90kGIV-UvyZmGzqurw5ySt4f71_lTunh5fJ7PFikWRRFSoFXLtWBQljm0FFAv2XLJ87JhTEABmoma86pCVHHDGqExh1JwVukSkep8Sm73vqOznxvlg-yNR9V1MCi78ZLlooxWLGcRrfZoDOi9U1qOzvTgtpJRuatSruWxSrmrUtJaxqKi8ubwBDxCpx0MaPxRzkXZVI3IIzfbcyom_jLKSY9GDaha4xQG2Vrz768fEL2QWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365116131</pqid></control><display><type>article</type><title>Construction of micropolar continua from the asymptotic homogenization of beam lattices</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dos Reis, F. ; Ganghoffer, J.F.</creator><creatorcontrib>Dos Reis, F. ; Ganghoffer, J.F.</creatorcontrib><description>► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations.
The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices endowed with a central symmetry, for which there is no coupling between stress and curvature. From the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of the effective continuum. The homogenized moduli are found in close agreement with the moduli obtained from finite element simulations performed over extended lattices. The obtained results are exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, leading to a dominant micropolar effect under bending at the macroscopic scale.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2012.08.006</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Asymptotic expansions ; Asymptotic properties ; Beam lattices ; Beams (structural) ; Computer simulation ; Continuums ; Discrete homogenization ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Homogenizing ; Lattices ; Mathematical analysis ; Micropolar continuum ; Microstructure effects ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computers & structures, 2012-12, Vol.112-113, p.354-363</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-a07d2f61a553ad0acfb1bb2359116a4af1682277cce911196fc3a56217f5cc0f3</citedby><cites>FETCH-LOGICAL-c444t-a07d2f61a553ad0acfb1bb2359116a4af1682277cce911196fc3a56217f5cc0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2012.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26597963$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dos Reis, F.</creatorcontrib><creatorcontrib>Ganghoffer, J.F.</creatorcontrib><title>Construction of micropolar continua from the asymptotic homogenization of beam lattices</title><title>Computers & structures</title><description>► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations.
The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices endowed with a central symmetry, for which there is no coupling between stress and curvature. From the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of the effective continuum. The homogenized moduli are found in close agreement with the moduli obtained from finite element simulations performed over extended lattices. The obtained results are exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, leading to a dominant micropolar effect under bending at the macroscopic scale.</description><subject>Algorithms</subject><subject>Asymptotic expansions</subject><subject>Asymptotic properties</subject><subject>Beam lattices</subject><subject>Beams (structural)</subject><subject>Computer simulation</subject><subject>Continuums</subject><subject>Discrete homogenization</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Homogenizing</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Micropolar continuum</subject><subject>Microstructure effects</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDOSCxCXBdhInOVYVf1IlLiCO1nZjU1dJHGwXqTw9Li29clpp95tZzRByzWjGKBN36wxtP_rgNphxynhG64xScUImrK6alPMiPyUTSosyrZqiOScX3q9pJApKJ-R9bodfbTB2SKxOeoPOjrYDl6Adghk2kGhn-ySsVAJ-24_BBoPJyvb2Qw3mG_6USwV90kGIV-UvyZmGzqurw5ySt4f71_lTunh5fJ7PFikWRRFSoFXLtWBQljm0FFAv2XLJ87JhTEABmoma86pCVHHDGqExh1JwVukSkep8Sm73vqOznxvlg-yNR9V1MCi78ZLlooxWLGcRrfZoDOi9U1qOzvTgtpJRuatSruWxSrmrUtJaxqKi8ubwBDxCpx0MaPxRzkXZVI3IIzfbcyom_jLKSY9GDaha4xQG2Vrz768fEL2QWA</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Dos Reis, F.</creator><creator>Ganghoffer, J.F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121201</creationdate><title>Construction of micropolar continua from the asymptotic homogenization of beam lattices</title><author>Dos Reis, F. ; Ganghoffer, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-a07d2f61a553ad0acfb1bb2359116a4af1682277cce911196fc3a56217f5cc0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Asymptotic expansions</topic><topic>Asymptotic properties</topic><topic>Beam lattices</topic><topic>Beams (structural)</topic><topic>Computer simulation</topic><topic>Continuums</topic><topic>Discrete homogenization</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Homogenizing</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Micropolar continuum</topic><topic>Microstructure effects</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dos Reis, F.</creatorcontrib><creatorcontrib>Ganghoffer, J.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dos Reis, F.</au><au>Ganghoffer, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of micropolar continua from the asymptotic homogenization of beam lattices</atitle><jtitle>Computers & structures</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>112-113</volume><spage>354</spage><epage>363</epage><pages>354-363</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>► Development of homogenization techniques for discrete lattice structures. ► Calculation of the effective elastic micropolar properties. ► Design of a lattice with a hierarchical double scale microstructure. ► Validation of the calculated micropolar moduli by comparison with FE simulations.
The asymptotic homogenization of periodic beam lattices is performed in an algorithmic format in the present contribution, leading to a micropolar equivalent continuum. This study is restricted to lattices endowed with a central symmetry, for which there is no coupling between stress and curvature. From the proposed algorithms, a versatile simulation code has been developed, relying on an input file giving the lattice topology and beam properties, and providing as an output the equivalent stiffness matrix of the effective continuum. The homogenized moduli are found in close agreement with the moduli obtained from finite element simulations performed over extended lattices. The obtained results are exploited to design and calculate a lattice endowed with a hierarchical double scale microstructure, leading to a dominant micropolar effect under bending at the macroscopic scale.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2012.08.006</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2012-12, Vol.112-113, p.354-363 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365116131 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Asymptotic expansions Asymptotic properties Beam lattices Beams (structural) Computer simulation Continuums Discrete homogenization Exact sciences and technology Fundamental areas of phenomenology (including applications) Homogenizing Lattices Mathematical analysis Micropolar continuum Microstructure effects Physics Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | Construction of micropolar continua from the asymptotic homogenization of beam lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20micropolar%20continua%20from%20the%20asymptotic%20homogenization%20of%20beam%20lattices&rft.jtitle=Computers%20&%20structures&rft.au=Dos%20Reis,%20F.&rft.date=2012-12-01&rft.volume=112-113&rft.spage=354&rft.epage=363&rft.pages=354-363&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2012.08.006&rft_dat=%3Cproquest_cross%3E1365116131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365116131&rft_id=info:pmid/&rft_els_id=S0045794912001940&rfr_iscdi=true |