Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry

A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel processing technology 2013-03, Vol.107, p.81-92
Hauptverfasser: Arrieta-Sanagustín, Jorge, Sánchez, Antonio L., Liñán, Amable, Williams, Forman A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 81
container_title Fuel processing technology
container_volume 107
creator Arrieta-Sanagustín, Jorge
Sánchez, Antonio L.
Liñán, Amable
Williams, Forman A.
description A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are used to formulate the gas-phase problem in terms of chemistry-free coupling functions. The resulting set of gas-phase conservations equations, which include homogenized source terms associated with the force acting on and the heating and vaporization of the droplets, are accompanied by a Eulerian description of the liquid phase, with appropriate conservation equations written for the number density, velocity, temperature, and radius of the droplets in the limiting case of small values of the volume fraction occupied by the droplets. The resulting formulation can be used in direct numerical simulations of spray diffusion flames and may also serve as a starting point in modeling strategies of turbulent flows. It is employed here for analysis of the combustion of a typical hollow-cone spray issuing from a pressure-swirl atomizer. ► A formulation is given for spray diusion ames with innitely fast chemistry (80). ► The formulation is applicable to numerical investigations and turbulence modeling (81). ► The gas-phase problem is formulated in terms of chemistry-free coupling functions (81). ► Constant Lewis numbers different from unity are accounted for in the formulation (79). ► A simplied analysis of hollow-cone, swirl-atomized spray ames was completed (79).
doi_str_mv 10.1016/j.fuproc.2012.07.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365115752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382012002858</els_id><sourcerecordid>1365115752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-28cf66b5898954bca543e2c0abc17e2da09664643dbbf2f74fb7095a7e34b2e13</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1UJLaFf4BELkhckvoj_sgFCa2grVSJA_RsOc649Sqxg5202n-Pl7Qce5o5PO_MqwehjwQ3BBNxeWjcOqdoG4oJbbBsMOVv0I4oyWpJlDpDO8ykqpmi-B06z_mAMea8kzs07OM6jz7c124NdvExVC6maR3Ny15NMcTB5xlShirPyRyrwTu35n_AaCbI1ZNfHiofnA9-gfFYOZOXyj7A5POSju_RW2fGDB-e5wW6-_H99_66vv15dbP_dltb1rGlpso6IXquOtXxtreGtwyoxaa3RAIdDO6EaEXLhr531MnW9RJ33EhgbU-BsAv0ZbtbZPxZIS-6_LcwjiZAXLMmTHBCuOS0oO2G2hRzTuD0nPxk0lETrE9S9UFvUvVJqsZSF6kl9vn5g8nWjC6ZYH3-n6WlT9fJtnCfNs6ZqM19Kszdr3JIFPFCKHXq-nUjoAh59JB0th6ChcEnsIseon-9yl8BXJsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365115752</pqid></control><display><type>article</type><title>Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry</title><source>Elsevier ScienceDirect Journals</source><creator>Arrieta-Sanagustín, Jorge ; Sánchez, Antonio L. ; Liñán, Amable ; Williams, Forman A.</creator><creatorcontrib>Arrieta-Sanagustín, Jorge ; Sánchez, Antonio L. ; Liñán, Amable ; Williams, Forman A.</creatorcontrib><description>A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are used to formulate the gas-phase problem in terms of chemistry-free coupling functions. The resulting set of gas-phase conservations equations, which include homogenized source terms associated with the force acting on and the heating and vaporization of the droplets, are accompanied by a Eulerian description of the liquid phase, with appropriate conservation equations written for the number density, velocity, temperature, and radius of the droplets in the limiting case of small values of the volume fraction occupied by the droplets. The resulting formulation can be used in direct numerical simulations of spray diffusion flames and may also serve as a starting point in modeling strategies of turbulent flows. It is employed here for analysis of the combustion of a typical hollow-cone spray issuing from a pressure-swirl atomizer. ► A formulation is given for spray diusion ames with innitely fast chemistry (80). ► The formulation is applicable to numerical investigations and turbulence modeling (81). ► The gas-phase problem is formulated in terms of chemistry-free coupling functions (81). ► Constant Lewis numbers different from unity are accounted for in the formulation (79). ► A simplied analysis of hollow-cone, swirl-atomized spray ames was completed (79).</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2012.07.025</identifier><identifier>CODEN: FPTEDY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; combustion ; Coupling functions ; droplets ; Energy ; Energy. Thermal use of fuels ; equations ; Exact sciences and technology ; Fuels ; gases ; Group combustion ; heat ; Hollow cone spray ; Infinitely fast combustion ; mathematical models ; Spray combustion ; Spray modeling ; temperature ; turbulent flow ; volatilization</subject><ispartof>Fuel processing technology, 2013-03, Vol.107, p.81-92</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-28cf66b5898954bca543e2c0abc17e2da09664643dbbf2f74fb7095a7e34b2e13</citedby><cites>FETCH-LOGICAL-c393t-28cf66b5898954bca543e2c0abc17e2da09664643dbbf2f74fb7095a7e34b2e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378382012002858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27099974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arrieta-Sanagustín, Jorge</creatorcontrib><creatorcontrib>Sánchez, Antonio L.</creatorcontrib><creatorcontrib>Liñán, Amable</creatorcontrib><creatorcontrib>Williams, Forman A.</creatorcontrib><title>Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry</title><title>Fuel processing technology</title><description>A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are used to formulate the gas-phase problem in terms of chemistry-free coupling functions. The resulting set of gas-phase conservations equations, which include homogenized source terms associated with the force acting on and the heating and vaporization of the droplets, are accompanied by a Eulerian description of the liquid phase, with appropriate conservation equations written for the number density, velocity, temperature, and radius of the droplets in the limiting case of small values of the volume fraction occupied by the droplets. The resulting formulation can be used in direct numerical simulations of spray diffusion flames and may also serve as a starting point in modeling strategies of turbulent flows. It is employed here for analysis of the combustion of a typical hollow-cone spray issuing from a pressure-swirl atomizer. ► A formulation is given for spray diusion ames with innitely fast chemistry (80). ► The formulation is applicable to numerical investigations and turbulence modeling (81). ► The gas-phase problem is formulated in terms of chemistry-free coupling functions (81). ► Constant Lewis numbers different from unity are accounted for in the formulation (79). ► A simplied analysis of hollow-cone, swirl-atomized spray ames was completed (79).</description><subject>Applied sciences</subject><subject>combustion</subject><subject>Coupling functions</subject><subject>droplets</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>gases</subject><subject>Group combustion</subject><subject>heat</subject><subject>Hollow cone spray</subject><subject>Infinitely fast combustion</subject><subject>mathematical models</subject><subject>Spray combustion</subject><subject>Spray modeling</subject><subject>temperature</subject><subject>turbulent flow</subject><subject>volatilization</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi1UJLaFf4BELkhckvoj_sgFCa2grVSJA_RsOc649Sqxg5202n-Pl7Qce5o5PO_MqwehjwQ3BBNxeWjcOqdoG4oJbbBsMOVv0I4oyWpJlDpDO8ykqpmi-B06z_mAMea8kzs07OM6jz7c124NdvExVC6maR3Ny15NMcTB5xlShirPyRyrwTu35n_AaCbI1ZNfHiofnA9-gfFYOZOXyj7A5POSju_RW2fGDB-e5wW6-_H99_66vv15dbP_dltb1rGlpso6IXquOtXxtreGtwyoxaa3RAIdDO6EaEXLhr531MnW9RJ33EhgbU-BsAv0ZbtbZPxZIS-6_LcwjiZAXLMmTHBCuOS0oO2G2hRzTuD0nPxk0lETrE9S9UFvUvVJqsZSF6kl9vn5g8nWjC6ZYH3-n6WlT9fJtnCfNs6ZqM19Kszdr3JIFPFCKHXq-nUjoAh59JB0th6ChcEnsIseon-9yl8BXJsY</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Arrieta-Sanagustín, Jorge</creator><creator>Sánchez, Antonio L.</creator><creator>Liñán, Amable</creator><creator>Williams, Forman A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130301</creationdate><title>Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry</title><author>Arrieta-Sanagustín, Jorge ; Sánchez, Antonio L. ; Liñán, Amable ; Williams, Forman A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-28cf66b5898954bca543e2c0abc17e2da09664643dbbf2f74fb7095a7e34b2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>combustion</topic><topic>Coupling functions</topic><topic>droplets</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>gases</topic><topic>Group combustion</topic><topic>heat</topic><topic>Hollow cone spray</topic><topic>Infinitely fast combustion</topic><topic>mathematical models</topic><topic>Spray combustion</topic><topic>Spray modeling</topic><topic>temperature</topic><topic>turbulent flow</topic><topic>volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arrieta-Sanagustín, Jorge</creatorcontrib><creatorcontrib>Sánchez, Antonio L.</creatorcontrib><creatorcontrib>Liñán, Amable</creatorcontrib><creatorcontrib>Williams, Forman A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arrieta-Sanagustín, Jorge</au><au>Sánchez, Antonio L.</au><au>Liñán, Amable</au><au>Williams, Forman A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry</atitle><jtitle>Fuel processing technology</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>107</volume><spage>81</spage><epage>92</epage><pages>81-92</pages><issn>0378-3820</issn><eissn>1873-7188</eissn><coden>FPTEDY</coden><abstract>A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are used to formulate the gas-phase problem in terms of chemistry-free coupling functions. The resulting set of gas-phase conservations equations, which include homogenized source terms associated with the force acting on and the heating and vaporization of the droplets, are accompanied by a Eulerian description of the liquid phase, with appropriate conservation equations written for the number density, velocity, temperature, and radius of the droplets in the limiting case of small values of the volume fraction occupied by the droplets. The resulting formulation can be used in direct numerical simulations of spray diffusion flames and may also serve as a starting point in modeling strategies of turbulent flows. It is employed here for analysis of the combustion of a typical hollow-cone spray issuing from a pressure-swirl atomizer. ► A formulation is given for spray diusion ames with innitely fast chemistry (80). ► The formulation is applicable to numerical investigations and turbulence modeling (81). ► The gas-phase problem is formulated in terms of chemistry-free coupling functions (81). ► Constant Lewis numbers different from unity are accounted for in the formulation (79). ► A simplied analysis of hollow-cone, swirl-atomized spray ames was completed (79).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2012.07.025</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-3820
ispartof Fuel processing technology, 2013-03, Vol.107, p.81-92
issn 0378-3820
1873-7188
language eng
recordid cdi_proquest_miscellaneous_1365115752
source Elsevier ScienceDirect Journals
subjects Applied sciences
combustion
Coupling functions
droplets
Energy
Energy. Thermal use of fuels
equations
Exact sciences and technology
Fuels
gases
Group combustion
heat
Hollow cone spray
Infinitely fast combustion
mathematical models
Spray combustion
Spray modeling
temperature
turbulent flow
volatilization
title Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling-function%20formulation%20for%20monodisperse%20spray%20diffusion%20flames%20with%20infinitely%20fast%20chemistry&rft.jtitle=Fuel%20processing%20technology&rft.au=Arrieta-Sanagust%C3%ADn,%20Jorge&rft.date=2013-03-01&rft.volume=107&rft.spage=81&rft.epage=92&rft.pages=81-92&rft.issn=0378-3820&rft.eissn=1873-7188&rft.coden=FPTEDY&rft_id=info:doi/10.1016/j.fuproc.2012.07.025&rft_dat=%3Cproquest_cross%3E1365115752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365115752&rft_id=info:pmid/&rft_els_id=S0378382012002858&rfr_iscdi=true