Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry
A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are u...
Gespeichert in:
Veröffentlicht in: | Fuel processing technology 2013-03, Vol.107, p.81-92 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 92 |
---|---|
container_issue | |
container_start_page | 81 |
container_title | Fuel processing technology |
container_volume | 107 |
creator | Arrieta-Sanagustín, Jorge Sánchez, Antonio L. Liñán, Amable Williams, Forman A. |
description | A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are used to formulate the gas-phase problem in terms of chemistry-free coupling functions. The resulting set of gas-phase conservations equations, which include homogenized source terms associated with the force acting on and the heating and vaporization of the droplets, are accompanied by a Eulerian description of the liquid phase, with appropriate conservation equations written for the number density, velocity, temperature, and radius of the droplets in the limiting case of small values of the volume fraction occupied by the droplets. The resulting formulation can be used in direct numerical simulations of spray diffusion flames and may also serve as a starting point in modeling strategies of turbulent flows. It is employed here for analysis of the combustion of a typical hollow-cone spray issuing from a pressure-swirl atomizer.
► A formulation is given for spray diusion ames with innitely fast chemistry (80). ► The formulation is applicable to numerical investigations and turbulence modeling (81). ► The gas-phase problem is formulated in terms of chemistry-free coupling functions (81). ► Constant Lewis numbers different from unity are accounted for in the formulation (79). ► A simplied analysis of hollow-cone, swirl-atomized spray ames was completed (79). |
doi_str_mv | 10.1016/j.fuproc.2012.07.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1365115752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382012002858</els_id><sourcerecordid>1365115752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-28cf66b5898954bca543e2c0abc17e2da09664643dbbf2f74fb7095a7e34b2e13</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1UJLaFf4BELkhckvoj_sgFCa2grVSJA_RsOc649Sqxg5202n-Pl7Qce5o5PO_MqwehjwQ3BBNxeWjcOqdoG4oJbbBsMOVv0I4oyWpJlDpDO8ykqpmi-B06z_mAMea8kzs07OM6jz7c124NdvExVC6maR3Ny15NMcTB5xlShirPyRyrwTu35n_AaCbI1ZNfHiofnA9-gfFYOZOXyj7A5POSju_RW2fGDB-e5wW6-_H99_66vv15dbP_dltb1rGlpso6IXquOtXxtreGtwyoxaa3RAIdDO6EaEXLhr531MnW9RJ33EhgbU-BsAv0ZbtbZPxZIS-6_LcwjiZAXLMmTHBCuOS0oO2G2hRzTuD0nPxk0lETrE9S9UFvUvVJqsZSF6kl9vn5g8nWjC6ZYH3-n6WlT9fJtnCfNs6ZqM19Kszdr3JIFPFCKHXq-nUjoAh59JB0th6ChcEnsIseon-9yl8BXJsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365115752</pqid></control><display><type>article</type><title>Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry</title><source>Elsevier ScienceDirect Journals</source><creator>Arrieta-Sanagustín, Jorge ; Sánchez, Antonio L. ; Liñán, Amable ; Williams, Forman A.</creator><creatorcontrib>Arrieta-Sanagustín, Jorge ; Sánchez, Antonio L. ; Liñán, Amable ; Williams, Forman A.</creatorcontrib><description>A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are used to formulate the gas-phase problem in terms of chemistry-free coupling functions. The resulting set of gas-phase conservations equations, which include homogenized source terms associated with the force acting on and the heating and vaporization of the droplets, are accompanied by a Eulerian description of the liquid phase, with appropriate conservation equations written for the number density, velocity, temperature, and radius of the droplets in the limiting case of small values of the volume fraction occupied by the droplets. The resulting formulation can be used in direct numerical simulations of spray diffusion flames and may also serve as a starting point in modeling strategies of turbulent flows. It is employed here for analysis of the combustion of a typical hollow-cone spray issuing from a pressure-swirl atomizer.
► A formulation is given for spray diusion ames with innitely fast chemistry (80). ► The formulation is applicable to numerical investigations and turbulence modeling (81). ► The gas-phase problem is formulated in terms of chemistry-free coupling functions (81). ► Constant Lewis numbers different from unity are accounted for in the formulation (79). ► A simplied analysis of hollow-cone, swirl-atomized spray ames was completed (79).</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2012.07.025</identifier><identifier>CODEN: FPTEDY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; combustion ; Coupling functions ; droplets ; Energy ; Energy. Thermal use of fuels ; equations ; Exact sciences and technology ; Fuels ; gases ; Group combustion ; heat ; Hollow cone spray ; Infinitely fast combustion ; mathematical models ; Spray combustion ; Spray modeling ; temperature ; turbulent flow ; volatilization</subject><ispartof>Fuel processing technology, 2013-03, Vol.107, p.81-92</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-28cf66b5898954bca543e2c0abc17e2da09664643dbbf2f74fb7095a7e34b2e13</citedby><cites>FETCH-LOGICAL-c393t-28cf66b5898954bca543e2c0abc17e2da09664643dbbf2f74fb7095a7e34b2e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378382012002858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27099974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arrieta-Sanagustín, Jorge</creatorcontrib><creatorcontrib>Sánchez, Antonio L.</creatorcontrib><creatorcontrib>Liñán, Amable</creatorcontrib><creatorcontrib>Williams, Forman A.</creatorcontrib><title>Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry</title><title>Fuel processing technology</title><description>A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are used to formulate the gas-phase problem in terms of chemistry-free coupling functions. The resulting set of gas-phase conservations equations, which include homogenized source terms associated with the force acting on and the heating and vaporization of the droplets, are accompanied by a Eulerian description of the liquid phase, with appropriate conservation equations written for the number density, velocity, temperature, and radius of the droplets in the limiting case of small values of the volume fraction occupied by the droplets. The resulting formulation can be used in direct numerical simulations of spray diffusion flames and may also serve as a starting point in modeling strategies of turbulent flows. It is employed here for analysis of the combustion of a typical hollow-cone spray issuing from a pressure-swirl atomizer.
► A formulation is given for spray diusion ames with innitely fast chemistry (80). ► The formulation is applicable to numerical investigations and turbulence modeling (81). ► The gas-phase problem is formulated in terms of chemistry-free coupling functions (81). ► Constant Lewis numbers different from unity are accounted for in the formulation (79). ► A simplied analysis of hollow-cone, swirl-atomized spray ames was completed (79).</description><subject>Applied sciences</subject><subject>combustion</subject><subject>Coupling functions</subject><subject>droplets</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>gases</subject><subject>Group combustion</subject><subject>heat</subject><subject>Hollow cone spray</subject><subject>Infinitely fast combustion</subject><subject>mathematical models</subject><subject>Spray combustion</subject><subject>Spray modeling</subject><subject>temperature</subject><subject>turbulent flow</subject><subject>volatilization</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi1UJLaFf4BELkhckvoj_sgFCa2grVSJA_RsOc649Sqxg5202n-Pl7Qce5o5PO_MqwehjwQ3BBNxeWjcOqdoG4oJbbBsMOVv0I4oyWpJlDpDO8ykqpmi-B06z_mAMea8kzs07OM6jz7c124NdvExVC6maR3Ny15NMcTB5xlShirPyRyrwTu35n_AaCbI1ZNfHiofnA9-gfFYOZOXyj7A5POSju_RW2fGDB-e5wW6-_H99_66vv15dbP_dltb1rGlpso6IXquOtXxtreGtwyoxaa3RAIdDO6EaEXLhr531MnW9RJ33EhgbU-BsAv0ZbtbZPxZIS-6_LcwjiZAXLMmTHBCuOS0oO2G2hRzTuD0nPxk0lETrE9S9UFvUvVJqsZSF6kl9vn5g8nWjC6ZYH3-n6WlT9fJtnCfNs6ZqM19Kszdr3JIFPFCKHXq-nUjoAh59JB0th6ChcEnsIseon-9yl8BXJsY</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Arrieta-Sanagustín, Jorge</creator><creator>Sánchez, Antonio L.</creator><creator>Liñán, Amable</creator><creator>Williams, Forman A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130301</creationdate><title>Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry</title><author>Arrieta-Sanagustín, Jorge ; Sánchez, Antonio L. ; Liñán, Amable ; Williams, Forman A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-28cf66b5898954bca543e2c0abc17e2da09664643dbbf2f74fb7095a7e34b2e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>combustion</topic><topic>Coupling functions</topic><topic>droplets</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>gases</topic><topic>Group combustion</topic><topic>heat</topic><topic>Hollow cone spray</topic><topic>Infinitely fast combustion</topic><topic>mathematical models</topic><topic>Spray combustion</topic><topic>Spray modeling</topic><topic>temperature</topic><topic>turbulent flow</topic><topic>volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arrieta-Sanagustín, Jorge</creatorcontrib><creatorcontrib>Sánchez, Antonio L.</creatorcontrib><creatorcontrib>Liñán, Amable</creatorcontrib><creatorcontrib>Williams, Forman A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arrieta-Sanagustín, Jorge</au><au>Sánchez, Antonio L.</au><au>Liñán, Amable</au><au>Williams, Forman A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry</atitle><jtitle>Fuel processing technology</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>107</volume><spage>81</spage><epage>92</epage><pages>81-92</pages><issn>0378-3820</issn><eissn>1873-7188</eissn><coden>FPTEDY</coden><abstract>A general formulation is given for the numerical computation of spray diffusion flames in the Burke–Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different reactants. Linear combinations of the conservation equations for the species and energy are used to formulate the gas-phase problem in terms of chemistry-free coupling functions. The resulting set of gas-phase conservations equations, which include homogenized source terms associated with the force acting on and the heating and vaporization of the droplets, are accompanied by a Eulerian description of the liquid phase, with appropriate conservation equations written for the number density, velocity, temperature, and radius of the droplets in the limiting case of small values of the volume fraction occupied by the droplets. The resulting formulation can be used in direct numerical simulations of spray diffusion flames and may also serve as a starting point in modeling strategies of turbulent flows. It is employed here for analysis of the combustion of a typical hollow-cone spray issuing from a pressure-swirl atomizer.
► A formulation is given for spray diusion ames with innitely fast chemistry (80). ► The formulation is applicable to numerical investigations and turbulence modeling (81). ► The gas-phase problem is formulated in terms of chemistry-free coupling functions (81). ► Constant Lewis numbers different from unity are accounted for in the formulation (79). ► A simplied analysis of hollow-cone, swirl-atomized spray ames was completed (79).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2012.07.025</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3820 |
ispartof | Fuel processing technology, 2013-03, Vol.107, p.81-92 |
issn | 0378-3820 1873-7188 |
language | eng |
recordid | cdi_proquest_miscellaneous_1365115752 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences combustion Coupling functions droplets Energy Energy. Thermal use of fuels equations Exact sciences and technology Fuels gases Group combustion heat Hollow cone spray Infinitely fast combustion mathematical models Spray combustion Spray modeling temperature turbulent flow volatilization |
title | Coupling-function formulation for monodisperse spray diffusion flames with infinitely fast chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling-function%20formulation%20for%20monodisperse%20spray%20diffusion%20flames%20with%20infinitely%20fast%20chemistry&rft.jtitle=Fuel%20processing%20technology&rft.au=Arrieta-Sanagust%C3%ADn,%20Jorge&rft.date=2013-03-01&rft.volume=107&rft.spage=81&rft.epage=92&rft.pages=81-92&rft.issn=0378-3820&rft.eissn=1873-7188&rft.coden=FPTEDY&rft_id=info:doi/10.1016/j.fuproc.2012.07.025&rft_dat=%3Cproquest_cross%3E1365115752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365115752&rft_id=info:pmid/&rft_els_id=S0378382012002858&rfr_iscdi=true |