Experience with volumetric (320 rows) pediatric CT
Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT)...
Gespeichert in:
Veröffentlicht in: | European journal of radiology 2013-07, Vol.82 (7), p.1091-1097 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1097 |
---|---|
container_issue | 7 |
container_start_page | 1091 |
container_title | European journal of radiology |
container_volume | 82 |
creator | Sorantin, E Riccabona, M Stücklschweiger, G Guss, H Fotter, R |
description | Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT) is based on a 16 cm detector; a special acquisition mode allows reconstructing 640 slices from these 16 cm. The shortest tube rotation time is in cardiac mode 0.35 s, otherwise 0.4 s and 0.5 s used. At 0.5 s the machine already reaches the maximum numbers of sub-second projections. Scan modes can be volume, helical and single slice mode. For image acquisition all dose savings technologies like variable tube position for scano-view, active collimation, automated exposure control, bolus and ECG tracking are available. Additionally special acquisition and post-processing techniques like head and body perfusion CT are ready for use on the console. For image reconstruction properties like filtered back projection as well as the latest development of iterative algorithms, an appropriate number of kernels and multi-planar reconstruction in all directions from the volume data at every increment are available. Volume CT allows sub second scanning of 16 cm z -coverage which, however, makes administration of intravenous contrast medium to “hit or miss” event. The aim of this paper is to present the application of volume CT to body scanning in children. Representative examples of neck, cardiac and skeletal investigations are given. |
doi_str_mv | 10.1016/j.ejrad.2011.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1364708654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0720048X11008321</els_id><sourcerecordid>1364708654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6543620ab77575248b43488368214944daf3706aaf186869ca6d915cc13cd87a3</originalsourceid><addsrcrecordid>eNqFkUFrGzEQhUVJaBw3v6BQ9pgedjMjaSX50EAwaVoI5BAXchOydky1WXtdaTep_3137aSHXDKXgeG9ecw3jH1GKBBQXdQF1dFVBQfEAnkBgB_YBI3mudZcH7EJaA45SPNwwk5TqgGglDP-kZ3woTRXOGH8-u-WYqCNp-w5dL-zp7bp19TF4LNzwSGL7XP6mm2pCm4_nC8-seOVaxKdvfQp-_X9ejH_kd_e3fycX93mXqLsclVKoTi4pdalLrk0SymkMUIZjnImZeVWQoNyboVGGTXzTlUzLL1H4SujnZiy88PebWz_9JQ6uw7JU9O4DbV9siiU1GDGnCkTB6mPbUqRVnYbw9rFnUWwIyxb2z0sO8KyyO0Aa3B9eQnol2uq_nte6QyCbwcBDWc-BYo2-T2qKkTyna3a8E7A5Ru_b8ImeNc80o5S3fZxMxC0aNNgsPfjv8Z3IQIYwVH8A2_ZjOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1364708654</pqid></control><display><type>article</type><title>Experience with volumetric (320 rows) pediatric CT</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sorantin, E ; Riccabona, M ; Stücklschweiger, G ; Guss, H ; Fotter, R</creator><creatorcontrib>Sorantin, E ; Riccabona, M ; Stücklschweiger, G ; Guss, H ; Fotter, R</creatorcontrib><description>Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT) is based on a 16 cm detector; a special acquisition mode allows reconstructing 640 slices from these 16 cm. The shortest tube rotation time is in cardiac mode 0.35 s, otherwise 0.4 s and 0.5 s used. At 0.5 s the machine already reaches the maximum numbers of sub-second projections. Scan modes can be volume, helical and single slice mode. For image acquisition all dose savings technologies like variable tube position for scano-view, active collimation, automated exposure control, bolus and ECG tracking are available. Additionally special acquisition and post-processing techniques like head and body perfusion CT are ready for use on the console. For image reconstruction properties like filtered back projection as well as the latest development of iterative algorithms, an appropriate number of kernels and multi-planar reconstruction in all directions from the volume data at every increment are available. Volume CT allows sub second scanning of 16 cm z -coverage which, however, makes administration of intravenous contrast medium to “hit or miss” event. The aim of this paper is to present the application of volume CT to body scanning in children. Representative examples of neck, cardiac and skeletal investigations are given.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2011.12.001</identifier><identifier>PMID: 22227261</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Child ; Children ; Computed tomography ; Humans ; Imaging, Three-Dimensional - methods ; Radiation Injuries - etiology ; Radiation Injuries - prevention & control ; Radiation Protection - methods ; Radiology ; Technology ; Tomography, X-Ray Computed - adverse effects ; Tomography, X-Ray Computed - methods ; Whole Body Imaging - adverse effects ; Whole Body Imaging - methods</subject><ispartof>European journal of radiology, 2013-07, Vol.82 (7), p.1091-1097</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2011 Elsevier Ireland Ltd</rights><rights>Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6543620ab77575248b43488368214944daf3706aaf186869ca6d915cc13cd87a3</citedby><cites>FETCH-LOGICAL-c414t-6543620ab77575248b43488368214944daf3706aaf186869ca6d915cc13cd87a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0720048X11008321$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22227261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorantin, E</creatorcontrib><creatorcontrib>Riccabona, M</creatorcontrib><creatorcontrib>Stücklschweiger, G</creatorcontrib><creatorcontrib>Guss, H</creatorcontrib><creatorcontrib>Fotter, R</creatorcontrib><title>Experience with volumetric (320 rows) pediatric CT</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT) is based on a 16 cm detector; a special acquisition mode allows reconstructing 640 slices from these 16 cm. The shortest tube rotation time is in cardiac mode 0.35 s, otherwise 0.4 s and 0.5 s used. At 0.5 s the machine already reaches the maximum numbers of sub-second projections. Scan modes can be volume, helical and single slice mode. For image acquisition all dose savings technologies like variable tube position for scano-view, active collimation, automated exposure control, bolus and ECG tracking are available. Additionally special acquisition and post-processing techniques like head and body perfusion CT are ready for use on the console. For image reconstruction properties like filtered back projection as well as the latest development of iterative algorithms, an appropriate number of kernels and multi-planar reconstruction in all directions from the volume data at every increment are available. Volume CT allows sub second scanning of 16 cm z -coverage which, however, makes administration of intravenous contrast medium to “hit or miss” event. The aim of this paper is to present the application of volume CT to body scanning in children. Representative examples of neck, cardiac and skeletal investigations are given.</description><subject>Child</subject><subject>Children</subject><subject>Computed tomography</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Radiation Injuries - etiology</subject><subject>Radiation Injuries - prevention & control</subject><subject>Radiation Protection - methods</subject><subject>Radiology</subject><subject>Technology</subject><subject>Tomography, X-Ray Computed - adverse effects</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Whole Body Imaging - adverse effects</subject><subject>Whole Body Imaging - methods</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFrGzEQhUVJaBw3v6BQ9pgedjMjaSX50EAwaVoI5BAXchOydky1WXtdaTep_3137aSHXDKXgeG9ecw3jH1GKBBQXdQF1dFVBQfEAnkBgB_YBI3mudZcH7EJaA45SPNwwk5TqgGglDP-kZ3woTRXOGH8-u-WYqCNp-w5dL-zp7bp19TF4LNzwSGL7XP6mm2pCm4_nC8-seOVaxKdvfQp-_X9ejH_kd_e3fycX93mXqLsclVKoTi4pdalLrk0SymkMUIZjnImZeVWQoNyboVGGTXzTlUzLL1H4SujnZiy88PebWz_9JQ6uw7JU9O4DbV9siiU1GDGnCkTB6mPbUqRVnYbw9rFnUWwIyxb2z0sO8KyyO0Aa3B9eQnol2uq_nte6QyCbwcBDWc-BYo2-T2qKkTyna3a8E7A5Ru_b8ImeNc80o5S3fZxMxC0aNNgsPfjv8Z3IQIYwVH8A2_ZjOs</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Sorantin, E</creator><creator>Riccabona, M</creator><creator>Stücklschweiger, G</creator><creator>Guss, H</creator><creator>Fotter, R</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130701</creationdate><title>Experience with volumetric (320 rows) pediatric CT</title><author>Sorantin, E ; Riccabona, M ; Stücklschweiger, G ; Guss, H ; Fotter, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6543620ab77575248b43488368214944daf3706aaf186869ca6d915cc13cd87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Child</topic><topic>Children</topic><topic>Computed tomography</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Radiation Injuries - etiology</topic><topic>Radiation Injuries - prevention & control</topic><topic>Radiation Protection - methods</topic><topic>Radiology</topic><topic>Technology</topic><topic>Tomography, X-Ray Computed - adverse effects</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Whole Body Imaging - adverse effects</topic><topic>Whole Body Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorantin, E</creatorcontrib><creatorcontrib>Riccabona, M</creatorcontrib><creatorcontrib>Stücklschweiger, G</creatorcontrib><creatorcontrib>Guss, H</creatorcontrib><creatorcontrib>Fotter, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorantin, E</au><au>Riccabona, M</au><au>Stücklschweiger, G</au><au>Guss, H</au><au>Fotter, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experience with volumetric (320 rows) pediatric CT</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>82</volume><issue>7</issue><spage>1091</spage><epage>1097</epage><pages>1091-1097</pages><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT) is based on a 16 cm detector; a special acquisition mode allows reconstructing 640 slices from these 16 cm. The shortest tube rotation time is in cardiac mode 0.35 s, otherwise 0.4 s and 0.5 s used. At 0.5 s the machine already reaches the maximum numbers of sub-second projections. Scan modes can be volume, helical and single slice mode. For image acquisition all dose savings technologies like variable tube position for scano-view, active collimation, automated exposure control, bolus and ECG tracking are available. Additionally special acquisition and post-processing techniques like head and body perfusion CT are ready for use on the console. For image reconstruction properties like filtered back projection as well as the latest development of iterative algorithms, an appropriate number of kernels and multi-planar reconstruction in all directions from the volume data at every increment are available. Volume CT allows sub second scanning of 16 cm z -coverage which, however, makes administration of intravenous contrast medium to “hit or miss” event. The aim of this paper is to present the application of volume CT to body scanning in children. Representative examples of neck, cardiac and skeletal investigations are given.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>22227261</pmid><doi>10.1016/j.ejrad.2011.12.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0720-048X |
ispartof | European journal of radiology, 2013-07, Vol.82 (7), p.1091-1097 |
issn | 0720-048X 1872-7727 |
language | eng |
recordid | cdi_proquest_miscellaneous_1364708654 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Child Children Computed tomography Humans Imaging, Three-Dimensional - methods Radiation Injuries - etiology Radiation Injuries - prevention & control Radiation Protection - methods Radiology Technology Tomography, X-Ray Computed - adverse effects Tomography, X-Ray Computed - methods Whole Body Imaging - adverse effects Whole Body Imaging - methods |
title | Experience with volumetric (320 rows) pediatric CT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experience%20with%20volumetric%20(320%20rows)%20pediatric%20CT&rft.jtitle=European%20journal%20of%20radiology&rft.au=Sorantin,%20E&rft.date=2013-07-01&rft.volume=82&rft.issue=7&rft.spage=1091&rft.epage=1097&rft.pages=1091-1097&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2011.12.001&rft_dat=%3Cproquest_cross%3E1364708654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1364708654&rft_id=info:pmid/22227261&rft_els_id=1_s2_0_S0720048X11008321&rfr_iscdi=true |