Experience with volumetric (320 rows) pediatric CT

Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of radiology 2013-07, Vol.82 (7), p.1091-1097
Hauptverfasser: Sorantin, E, Riccabona, M, Stücklschweiger, G, Guss, H, Fotter, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1097
container_issue 7
container_start_page 1091
container_title European journal of radiology
container_volume 82
creator Sorantin, E
Riccabona, M
Stücklschweiger, G
Guss, H
Fotter, R
description Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT) is based on a 16 cm detector; a special acquisition mode allows reconstructing 640 slices from these 16 cm. The shortest tube rotation time is in cardiac mode 0.35 s, otherwise 0.4 s and 0.5 s used. At 0.5 s the machine already reaches the maximum numbers of sub-second projections. Scan modes can be volume, helical and single slice mode. For image acquisition all dose savings technologies like variable tube position for scano-view, active collimation, automated exposure control, bolus and ECG tracking are available. Additionally special acquisition and post-processing techniques like head and body perfusion CT are ready for use on the console. For image reconstruction properties like filtered back projection as well as the latest development of iterative algorithms, an appropriate number of kernels and multi-planar reconstruction in all directions from the volume data at every increment are available. Volume CT allows sub second scanning of 16 cm z -coverage which, however, makes administration of intravenous contrast medium to “hit or miss” event. The aim of this paper is to present the application of volume CT to body scanning in children. Representative examples of neck, cardiac and skeletal investigations are given.
doi_str_mv 10.1016/j.ejrad.2011.12.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1364708654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0720048X11008321</els_id><sourcerecordid>1364708654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6543620ab77575248b43488368214944daf3706aaf186869ca6d915cc13cd87a3</originalsourceid><addsrcrecordid>eNqFkUFrGzEQhUVJaBw3v6BQ9pgedjMjaSX50EAwaVoI5BAXchOydky1WXtdaTep_3137aSHXDKXgeG9ecw3jH1GKBBQXdQF1dFVBQfEAnkBgB_YBI3mudZcH7EJaA45SPNwwk5TqgGglDP-kZ3woTRXOGH8-u-WYqCNp-w5dL-zp7bp19TF4LNzwSGL7XP6mm2pCm4_nC8-seOVaxKdvfQp-_X9ejH_kd_e3fycX93mXqLsclVKoTi4pdalLrk0SymkMUIZjnImZeVWQoNyboVGGTXzTlUzLL1H4SujnZiy88PebWz_9JQ6uw7JU9O4DbV9siiU1GDGnCkTB6mPbUqRVnYbw9rFnUWwIyxb2z0sO8KyyO0Aa3B9eQnol2uq_nte6QyCbwcBDWc-BYo2-T2qKkTyna3a8E7A5Ru_b8ImeNc80o5S3fZxMxC0aNNgsPfjv8Z3IQIYwVH8A2_ZjOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1364708654</pqid></control><display><type>article</type><title>Experience with volumetric (320 rows) pediatric CT</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sorantin, E ; Riccabona, M ; Stücklschweiger, G ; Guss, H ; Fotter, R</creator><creatorcontrib>Sorantin, E ; Riccabona, M ; Stücklschweiger, G ; Guss, H ; Fotter, R</creatorcontrib><description>Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT) is based on a 16 cm detector; a special acquisition mode allows reconstructing 640 slices from these 16 cm. The shortest tube rotation time is in cardiac mode 0.35 s, otherwise 0.4 s and 0.5 s used. At 0.5 s the machine already reaches the maximum numbers of sub-second projections. Scan modes can be volume, helical and single slice mode. For image acquisition all dose savings technologies like variable tube position for scano-view, active collimation, automated exposure control, bolus and ECG tracking are available. Additionally special acquisition and post-processing techniques like head and body perfusion CT are ready for use on the console. For image reconstruction properties like filtered back projection as well as the latest development of iterative algorithms, an appropriate number of kernels and multi-planar reconstruction in all directions from the volume data at every increment are available. Volume CT allows sub second scanning of 16 cm z -coverage which, however, makes administration of intravenous contrast medium to “hit or miss” event. The aim of this paper is to present the application of volume CT to body scanning in children. Representative examples of neck, cardiac and skeletal investigations are given.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2011.12.001</identifier><identifier>PMID: 22227261</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Child ; Children ; Computed tomography ; Humans ; Imaging, Three-Dimensional - methods ; Radiation Injuries - etiology ; Radiation Injuries - prevention &amp; control ; Radiation Protection - methods ; Radiology ; Technology ; Tomography, X-Ray Computed - adverse effects ; Tomography, X-Ray Computed - methods ; Whole Body Imaging - adverse effects ; Whole Body Imaging - methods</subject><ispartof>European journal of radiology, 2013-07, Vol.82 (7), p.1091-1097</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2011 Elsevier Ireland Ltd</rights><rights>Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6543620ab77575248b43488368214944daf3706aaf186869ca6d915cc13cd87a3</citedby><cites>FETCH-LOGICAL-c414t-6543620ab77575248b43488368214944daf3706aaf186869ca6d915cc13cd87a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0720048X11008321$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22227261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sorantin, E</creatorcontrib><creatorcontrib>Riccabona, M</creatorcontrib><creatorcontrib>Stücklschweiger, G</creatorcontrib><creatorcontrib>Guss, H</creatorcontrib><creatorcontrib>Fotter, R</creatorcontrib><title>Experience with volumetric (320 rows) pediatric CT</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT) is based on a 16 cm detector; a special acquisition mode allows reconstructing 640 slices from these 16 cm. The shortest tube rotation time is in cardiac mode 0.35 s, otherwise 0.4 s and 0.5 s used. At 0.5 s the machine already reaches the maximum numbers of sub-second projections. Scan modes can be volume, helical and single slice mode. For image acquisition all dose savings technologies like variable tube position for scano-view, active collimation, automated exposure control, bolus and ECG tracking are available. Additionally special acquisition and post-processing techniques like head and body perfusion CT are ready for use on the console. For image reconstruction properties like filtered back projection as well as the latest development of iterative algorithms, an appropriate number of kernels and multi-planar reconstruction in all directions from the volume data at every increment are available. Volume CT allows sub second scanning of 16 cm z -coverage which, however, makes administration of intravenous contrast medium to “hit or miss” event. The aim of this paper is to present the application of volume CT to body scanning in children. Representative examples of neck, cardiac and skeletal investigations are given.</description><subject>Child</subject><subject>Children</subject><subject>Computed tomography</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Radiation Injuries - etiology</subject><subject>Radiation Injuries - prevention &amp; control</subject><subject>Radiation Protection - methods</subject><subject>Radiology</subject><subject>Technology</subject><subject>Tomography, X-Ray Computed - adverse effects</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Whole Body Imaging - adverse effects</subject><subject>Whole Body Imaging - methods</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFrGzEQhUVJaBw3v6BQ9pgedjMjaSX50EAwaVoI5BAXchOydky1WXtdaTep_3137aSHXDKXgeG9ecw3jH1GKBBQXdQF1dFVBQfEAnkBgB_YBI3mudZcH7EJaA45SPNwwk5TqgGglDP-kZ3woTRXOGH8-u-WYqCNp-w5dL-zp7bp19TF4LNzwSGL7XP6mm2pCm4_nC8-seOVaxKdvfQp-_X9ejH_kd_e3fycX93mXqLsclVKoTi4pdalLrk0SymkMUIZjnImZeVWQoNyboVGGTXzTlUzLL1H4SujnZiy88PebWz_9JQ6uw7JU9O4DbV9siiU1GDGnCkTB6mPbUqRVnYbw9rFnUWwIyxb2z0sO8KyyO0Aa3B9eQnol2uq_nte6QyCbwcBDWc-BYo2-T2qKkTyna3a8E7A5Ru_b8ImeNc80o5S3fZxMxC0aNNgsPfjv8Z3IQIYwVH8A2_ZjOs</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Sorantin, E</creator><creator>Riccabona, M</creator><creator>Stücklschweiger, G</creator><creator>Guss, H</creator><creator>Fotter, R</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130701</creationdate><title>Experience with volumetric (320 rows) pediatric CT</title><author>Sorantin, E ; Riccabona, M ; Stücklschweiger, G ; Guss, H ; Fotter, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6543620ab77575248b43488368214944daf3706aaf186869ca6d915cc13cd87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Child</topic><topic>Children</topic><topic>Computed tomography</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Radiation Injuries - etiology</topic><topic>Radiation Injuries - prevention &amp; control</topic><topic>Radiation Protection - methods</topic><topic>Radiology</topic><topic>Technology</topic><topic>Tomography, X-Ray Computed - adverse effects</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Whole Body Imaging - adverse effects</topic><topic>Whole Body Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorantin, E</creatorcontrib><creatorcontrib>Riccabona, M</creatorcontrib><creatorcontrib>Stücklschweiger, G</creatorcontrib><creatorcontrib>Guss, H</creatorcontrib><creatorcontrib>Fotter, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorantin, E</au><au>Riccabona, M</au><au>Stücklschweiger, G</au><au>Guss, H</au><au>Fotter, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experience with volumetric (320 rows) pediatric CT</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>82</volume><issue>7</issue><spage>1091</spage><epage>1097</epage><pages>1091-1097</pages><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>Abstract The introduction of helical computer tomography (CT) and further progress to multi-slice CT enabled new applications. Most recent developments like the 320-row detector facilitate volume CT, which avoids the over-beaming effect of helical scanning. The 320-row multi-slice detector CT (MDCT) is based on a 16 cm detector; a special acquisition mode allows reconstructing 640 slices from these 16 cm. The shortest tube rotation time is in cardiac mode 0.35 s, otherwise 0.4 s and 0.5 s used. At 0.5 s the machine already reaches the maximum numbers of sub-second projections. Scan modes can be volume, helical and single slice mode. For image acquisition all dose savings technologies like variable tube position for scano-view, active collimation, automated exposure control, bolus and ECG tracking are available. Additionally special acquisition and post-processing techniques like head and body perfusion CT are ready for use on the console. For image reconstruction properties like filtered back projection as well as the latest development of iterative algorithms, an appropriate number of kernels and multi-planar reconstruction in all directions from the volume data at every increment are available. Volume CT allows sub second scanning of 16 cm z -coverage which, however, makes administration of intravenous contrast medium to “hit or miss” event. The aim of this paper is to present the application of volume CT to body scanning in children. Representative examples of neck, cardiac and skeletal investigations are given.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>22227261</pmid><doi>10.1016/j.ejrad.2011.12.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2013-07, Vol.82 (7), p.1091-1097
issn 0720-048X
1872-7727
language eng
recordid cdi_proquest_miscellaneous_1364708654
source MEDLINE; Elsevier ScienceDirect Journals
subjects Child
Children
Computed tomography
Humans
Imaging, Three-Dimensional - methods
Radiation Injuries - etiology
Radiation Injuries - prevention & control
Radiation Protection - methods
Radiology
Technology
Tomography, X-Ray Computed - adverse effects
Tomography, X-Ray Computed - methods
Whole Body Imaging - adverse effects
Whole Body Imaging - methods
title Experience with volumetric (320 rows) pediatric CT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experience%20with%20volumetric%20(320%20rows)%20pediatric%20CT&rft.jtitle=European%20journal%20of%20radiology&rft.au=Sorantin,%20E&rft.date=2013-07-01&rft.volume=82&rft.issue=7&rft.spage=1091&rft.epage=1097&rft.pages=1091-1097&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2011.12.001&rft_dat=%3Cproquest_cross%3E1364708654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1364708654&rft_id=info:pmid/22227261&rft_els_id=1_s2_0_S0720048X11008321&rfr_iscdi=true