Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
The combination of a direct electron-detection camera that can count individual electrons and an algorithm for correcting for beam-induced motion in cryo-EM will facilitate determination of three-dimensional structures of smaller, lower-symmetry macromolecular complexes to higher resolution than pre...
Gespeichert in:
Veröffentlicht in: | Nature methods 2013-06, Vol.10 (6), p.584-590 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 590 |
---|---|
container_issue | 6 |
container_start_page | 584 |
container_title | Nature methods |
container_volume | 10 |
creator | Li, Xueming Mooney, Paul Zheng, Shawn Booth, Christopher R Braunfeld, Michael B Gubbens, Sander Agard, David A Cheng, Yifan |
description | The combination of a direct electron-detection camera that can count individual electrons and an algorithm for correcting for beam-induced motion in cryo-EM will facilitate determination of three-dimensional structures of smaller, lower-symmetry macromolecular complexes to higher resolution than previously possible.
In recent work with large high-symmetry viruses, single-particle electron cryomicroscopy (cryo-EM) has achieved the determination of near-atomic-resolution structures by allowing direct fitting of atomic models into experimental density maps. However, achieving this goal with smaller particles of lower symmetry remains challenging. Using a newly developed single electron–counting detector, we confirmed that electron beam–induced motion substantially degrades resolution, and we showed that the combination of rapid readout and nearly noiseless electron counting allow image blurring to be corrected to subpixel accuracy, restoring intrinsic image information to high resolution (Thon rings visible to ∼3 Å). Using this approach, we determined a 3.3-Å-resolution structure of an ∼700-kDa protein with D7 symmetry, the
Thermoplasma acidophilum
20S proteasome, showing clear side-chain density. Our method greatly enhances image quality and data acquisition efficiency—key bottlenecks in applying near-atomic-resolution cryo-EM to a broad range of protein samples. |
doi_str_mv | 10.1038/nmeth.2472 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1357498759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A332379561</galeid><sourcerecordid>A332379561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-4352ff682bcb6ddd5273f5a4c24391e4f5ac3d9e33a7a577accfd1cc48b2beea3</originalsourceid><addsrcrecordid>eNptkcuO1DAQRS0EYh6w4QNQJDYI5CZ-tZPlaNQMSIPYwNpyypXGrcRubGcxf4-7e4a3vPBV1amrsi8hL1i7Yq3o3oUZy7cVl5o_IudMyY5q1qrHD7rt2Rm5yHnXtkJIrp6SMy7WUiqpz8luMyGUFEMDcQnFh21jg2sGtDP1wS2Arplj8UcgpcoeJAY7TNgEtInaEmcPNGGO03Ls5uoyId3bVDxUDNJdpJtPz8iT0U4Zn9_fl-Tr-82X6w_09vPNx-urWwqKt4VKofg4rjs-wLB2zimuxaisBC5Fz1BWDcL1KITVVmltAUbHAGQ38AHRikvy-uS7T_H7grmY2WfAabIB45INE0rLvtOqr-irv9BdXFKo2x0p0Usm9S9qayc0PoyxJAsHU3MlBBe6V2tWqdV_qHoc1v-JAUdf638MvDkNQIo5JxzNPvnZpjvDWnMI1hyDNYdgK_zyftNlmNH9RB-SrMDbE5BrK2wx_faUf-1-AJ1prhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357394147</pqid></control><display><type>article</type><title>Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM</title><source>MEDLINE</source><source>Springer Journals</source><source>Nature</source><creator>Li, Xueming ; Mooney, Paul ; Zheng, Shawn ; Booth, Christopher R ; Braunfeld, Michael B ; Gubbens, Sander ; Agard, David A ; Cheng, Yifan</creator><creatorcontrib>Li, Xueming ; Mooney, Paul ; Zheng, Shawn ; Booth, Christopher R ; Braunfeld, Michael B ; Gubbens, Sander ; Agard, David A ; Cheng, Yifan</creatorcontrib><description>The combination of a direct electron-detection camera that can count individual electrons and an algorithm for correcting for beam-induced motion in cryo-EM will facilitate determination of three-dimensional structures of smaller, lower-symmetry macromolecular complexes to higher resolution than previously possible.
In recent work with large high-symmetry viruses, single-particle electron cryomicroscopy (cryo-EM) has achieved the determination of near-atomic-resolution structures by allowing direct fitting of atomic models into experimental density maps. However, achieving this goal with smaller particles of lower symmetry remains challenging. Using a newly developed single electron–counting detector, we confirmed that electron beam–induced motion substantially degrades resolution, and we showed that the combination of rapid readout and nearly noiseless electron counting allow image blurring to be corrected to subpixel accuracy, restoring intrinsic image information to high resolution (Thon rings visible to ∼3 Å). Using this approach, we determined a 3.3-Å-resolution structure of an ∼700-kDa protein with D7 symmetry, the
Thermoplasma acidophilum
20S proteasome, showing clear side-chain density. Our method greatly enhances image quality and data acquisition efficiency—key bottlenecks in applying near-atomic-resolution cryo-EM to a broad range of protein samples.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.2472</identifier><identifier>PMID: 23644547</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1314 ; 631/1647/2258/1258/1259 ; 631/1647/328/1259 ; 631/45/612 ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical Engineering/Biotechnology ; Cryoelectron microscopy ; Cryoelectron Microscopy - methods ; Data acquisition ; Electrons ; Imaging, Three-Dimensional - methods ; Life Sciences ; Methods ; Microscopy ; Motion ; Proteasome Endopeptidase Complex - ultrastructure ; Proteins ; Proteomics ; Thermoplasma - enzymology ; Three-dimensional display systems</subject><ispartof>Nature methods, 2013-06, Vol.10 (6), p.584-590</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-4352ff682bcb6ddd5273f5a4c24391e4f5ac3d9e33a7a577accfd1cc48b2beea3</citedby><cites>FETCH-LOGICAL-c520t-4352ff682bcb6ddd5273f5a4c24391e4f5ac3d9e33a7a577accfd1cc48b2beea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.2472$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.2472$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23644547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xueming</creatorcontrib><creatorcontrib>Mooney, Paul</creatorcontrib><creatorcontrib>Zheng, Shawn</creatorcontrib><creatorcontrib>Booth, Christopher R</creatorcontrib><creatorcontrib>Braunfeld, Michael B</creatorcontrib><creatorcontrib>Gubbens, Sander</creatorcontrib><creatorcontrib>Agard, David A</creatorcontrib><creatorcontrib>Cheng, Yifan</creatorcontrib><title>Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>The combination of a direct electron-detection camera that can count individual electrons and an algorithm for correcting for beam-induced motion in cryo-EM will facilitate determination of three-dimensional structures of smaller, lower-symmetry macromolecular complexes to higher resolution than previously possible.
In recent work with large high-symmetry viruses, single-particle electron cryomicroscopy (cryo-EM) has achieved the determination of near-atomic-resolution structures by allowing direct fitting of atomic models into experimental density maps. However, achieving this goal with smaller particles of lower symmetry remains challenging. Using a newly developed single electron–counting detector, we confirmed that electron beam–induced motion substantially degrades resolution, and we showed that the combination of rapid readout and nearly noiseless electron counting allow image blurring to be corrected to subpixel accuracy, restoring intrinsic image information to high resolution (Thon rings visible to ∼3 Å). Using this approach, we determined a 3.3-Å-resolution structure of an ∼700-kDa protein with D7 symmetry, the
Thermoplasma acidophilum
20S proteasome, showing clear side-chain density. Our method greatly enhances image quality and data acquisition efficiency—key bottlenecks in applying near-atomic-resolution cryo-EM to a broad range of protein samples.</description><subject>631/114/1314</subject><subject>631/1647/2258/1258/1259</subject><subject>631/1647/328/1259</subject><subject>631/45/612</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cryoelectron microscopy</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Data acquisition</subject><subject>Electrons</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Motion</subject><subject>Proteasome Endopeptidase Complex - ultrastructure</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Thermoplasma - enzymology</subject><subject>Three-dimensional display systems</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkcuO1DAQRS0EYh6w4QNQJDYI5CZ-tZPlaNQMSIPYwNpyypXGrcRubGcxf4-7e4a3vPBV1amrsi8hL1i7Yq3o3oUZy7cVl5o_IudMyY5q1qrHD7rt2Rm5yHnXtkJIrp6SMy7WUiqpz8luMyGUFEMDcQnFh21jg2sGtDP1wS2Arplj8UcgpcoeJAY7TNgEtInaEmcPNGGO03Ls5uoyId3bVDxUDNJdpJtPz8iT0U4Zn9_fl-Tr-82X6w_09vPNx-urWwqKt4VKofg4rjs-wLB2zimuxaisBC5Fz1BWDcL1KITVVmltAUbHAGQ38AHRikvy-uS7T_H7grmY2WfAabIB45INE0rLvtOqr-irv9BdXFKo2x0p0Usm9S9qayc0PoyxJAsHU3MlBBe6V2tWqdV_qHoc1v-JAUdf638MvDkNQIo5JxzNPvnZpjvDWnMI1hyDNYdgK_zyftNlmNH9RB-SrMDbE5BrK2wx_faUf-1-AJ1prhU</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Li, Xueming</creator><creator>Mooney, Paul</creator><creator>Zheng, Shawn</creator><creator>Booth, Christopher R</creator><creator>Braunfeld, Michael B</creator><creator>Gubbens, Sander</creator><creator>Agard, David A</creator><creator>Cheng, Yifan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130601</creationdate><title>Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM</title><author>Li, Xueming ; Mooney, Paul ; Zheng, Shawn ; Booth, Christopher R ; Braunfeld, Michael B ; Gubbens, Sander ; Agard, David A ; Cheng, Yifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-4352ff682bcb6ddd5273f5a4c24391e4f5ac3d9e33a7a577accfd1cc48b2beea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/114/1314</topic><topic>631/1647/2258/1258/1259</topic><topic>631/1647/328/1259</topic><topic>631/45/612</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cryoelectron microscopy</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Data acquisition</topic><topic>Electrons</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Motion</topic><topic>Proteasome Endopeptidase Complex - ultrastructure</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Thermoplasma - enzymology</topic><topic>Three-dimensional display systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xueming</creatorcontrib><creatorcontrib>Mooney, Paul</creatorcontrib><creatorcontrib>Zheng, Shawn</creatorcontrib><creatorcontrib>Booth, Christopher R</creatorcontrib><creatorcontrib>Braunfeld, Michael B</creatorcontrib><creatorcontrib>Gubbens, Sander</creatorcontrib><creatorcontrib>Agard, David A</creatorcontrib><creatorcontrib>Cheng, Yifan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xueming</au><au>Mooney, Paul</au><au>Zheng, Shawn</au><au>Booth, Christopher R</au><au>Braunfeld, Michael B</au><au>Gubbens, Sander</au><au>Agard, David A</au><au>Cheng, Yifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>10</volume><issue>6</issue><spage>584</spage><epage>590</epage><pages>584-590</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>The combination of a direct electron-detection camera that can count individual electrons and an algorithm for correcting for beam-induced motion in cryo-EM will facilitate determination of three-dimensional structures of smaller, lower-symmetry macromolecular complexes to higher resolution than previously possible.
In recent work with large high-symmetry viruses, single-particle electron cryomicroscopy (cryo-EM) has achieved the determination of near-atomic-resolution structures by allowing direct fitting of atomic models into experimental density maps. However, achieving this goal with smaller particles of lower symmetry remains challenging. Using a newly developed single electron–counting detector, we confirmed that electron beam–induced motion substantially degrades resolution, and we showed that the combination of rapid readout and nearly noiseless electron counting allow image blurring to be corrected to subpixel accuracy, restoring intrinsic image information to high resolution (Thon rings visible to ∼3 Å). Using this approach, we determined a 3.3-Å-resolution structure of an ∼700-kDa protein with D7 symmetry, the
Thermoplasma acidophilum
20S proteasome, showing clear side-chain density. Our method greatly enhances image quality and data acquisition efficiency—key bottlenecks in applying near-atomic-resolution cryo-EM to a broad range of protein samples.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>23644547</pmid><doi>10.1038/nmeth.2472</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2013-06, Vol.10 (6), p.584-590 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_1357498759 |
source | MEDLINE; Springer Journals; Nature |
subjects | 631/114/1314 631/1647/2258/1258/1259 631/1647/328/1259 631/45/612 Bioinformatics Biological Microscopy Biological Techniques Biomedical Engineering/Biotechnology Cryoelectron microscopy Cryoelectron Microscopy - methods Data acquisition Electrons Imaging, Three-Dimensional - methods Life Sciences Methods Microscopy Motion Proteasome Endopeptidase Complex - ultrastructure Proteins Proteomics Thermoplasma - enzymology Three-dimensional display systems |
title | Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20counting%20and%20beam-induced%20motion%20correction%20enable%20near-atomic-resolution%20single-particle%20cryo-EM&rft.jtitle=Nature%20methods&rft.au=Li,%20Xueming&rft.date=2013-06-01&rft.volume=10&rft.issue=6&rft.spage=584&rft.epage=590&rft.pages=584-590&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.2472&rft_dat=%3Cgale_proqu%3EA332379561%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357394147&rft_id=info:pmid/23644547&rft_galeid=A332379561&rfr_iscdi=true |