From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant
In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental...
Gespeichert in:
Veröffentlicht in: | World journal of microbiology & biotechnology 2013-06, Vol.29 (6), p.1009-1017 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 6 |
container_start_page | 1009 |
container_title | World journal of microbiology & biotechnology |
container_volume | 29 |
creator | Cutzu, Raffaela Coi, Annalisa Rosso, Fulvia Bardi, Laura Ciani, Maurizio Budroni, Marilena Zara, Giacomo Zara, Severino Mannazzu, Ilaria |
description | In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of
Rhodotorula glutinis,
that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R
2
= 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (
P
|
doi_str_mv | 10.1007/s11274-013-1264-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1356936509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1356936509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-a2b2a6a5e309ccea242ca64f0c3762691c98dda5ef9b63e95bca63ee40d4be773</originalsourceid><addsrcrecordid>eNp1kMtKAzEARYMotlY_wI0E3LgZzWOSNEsRq4WCILoOmUxap8xMah7Q_r0pU0UEV1ncc2-SA8AlRrcYIXEXMCaiLBCmBSa8LLZHYIyZoAWSghyDMZJMFlRKOgJnIawRyi1JT8GIUMoYpmIM5jPvOmh8qi1ctTtjvWthdNBo76LtXVMHWO1gCk2_ghq-frjaRedTqzOeYtM3AXYp6j6eg5OlboO9OJwT8D57fHt4LhYvT_OH-0VhGJrGQpOKaK6ZpUgaYzUpidG8XCJDBSdcYiOndZ3zpaw4tZJVOabWlqguKysEnYCbYXfj3WeyIaquCca2re6tS0FhyriknOWfTsD1H3Ttku_z6_ZUiSjDU5wpPFDGuxC8XaqNbzrtdwojtfesBs8qe1Z7z2qbO1eH5VR1tv5pfIvNABmAkKN-Zf2vq_9d_QIECYjx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354035181</pqid></control><display><type>article</type><title>From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cutzu, Raffaela ; Coi, Annalisa ; Rosso, Fulvia ; Bardi, Laura ; Ciani, Maurizio ; Budroni, Marilena ; Zara, Giacomo ; Zara, Severino ; Mannazzu, Ilaria</creator><creatorcontrib>Cutzu, Raffaela ; Coi, Annalisa ; Rosso, Fulvia ; Bardi, Laura ; Ciani, Maurizio ; Budroni, Marilena ; Zara, Giacomo ; Zara, Severino ; Mannazzu, Ilaria</creatorcontrib><description>In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of
Rhodotorula glutinis,
that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R
2
= 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (
P
< 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l
−1
) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l
−1
) (
P
< 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.</description><identifier>ISSN: 0959-3993</identifier><identifier>EISSN: 1573-0972</identifier><identifier>DOI: 10.1007/s11274-013-1264-x</identifier><identifier>PMID: 23355137</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Applied Microbiology ; Biochemistry ; Biodiesel fuels ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Carotenoids ; Carotenoids - metabolism ; Catalysts ; Culture Media - chemistry ; Environmental Engineering/Biotechnology ; Glycerol ; Glycerol - metabolism ; Growth conditions ; Life Sciences ; Metabolic Engineering - methods ; Metabolites ; Microbiology ; Microorganisms ; Mutagenesis ; Original Paper ; Peptones ; Peptones - metabolism ; Rhodotorula - genetics ; Rhodotorula - growth & development ; Rhodotorula - metabolism ; Rhodotorula - radiation effects ; Rhodotorula glutinis ; Studies ; Ultraviolet Rays ; Vitamin A ; Yeast ; Yeasts</subject><ispartof>World journal of microbiology & biotechnology, 2013-06, Vol.29 (6), p.1009-1017</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-a2b2a6a5e309ccea242ca64f0c3762691c98dda5ef9b63e95bca63ee40d4be773</citedby><cites>FETCH-LOGICAL-c508t-a2b2a6a5e309ccea242ca64f0c3762691c98dda5ef9b63e95bca63ee40d4be773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11274-013-1264-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11274-013-1264-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23355137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cutzu, Raffaela</creatorcontrib><creatorcontrib>Coi, Annalisa</creatorcontrib><creatorcontrib>Rosso, Fulvia</creatorcontrib><creatorcontrib>Bardi, Laura</creatorcontrib><creatorcontrib>Ciani, Maurizio</creatorcontrib><creatorcontrib>Budroni, Marilena</creatorcontrib><creatorcontrib>Zara, Giacomo</creatorcontrib><creatorcontrib>Zara, Severino</creatorcontrib><creatorcontrib>Mannazzu, Ilaria</creatorcontrib><title>From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant</title><title>World journal of microbiology & biotechnology</title><addtitle>World J Microbiol Biotechnol</addtitle><addtitle>World J Microbiol Biotechnol</addtitle><description>In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of
Rhodotorula glutinis,
that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R
2
= 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (
P
< 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l
−1
) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l
−1
) (
P
< 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.</description><subject>Analysis</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biodiesel fuels</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Catalysts</subject><subject>Culture Media - chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Growth conditions</subject><subject>Life Sciences</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mutagenesis</subject><subject>Original Paper</subject><subject>Peptones</subject><subject>Peptones - metabolism</subject><subject>Rhodotorula - genetics</subject><subject>Rhodotorula - growth & development</subject><subject>Rhodotorula - metabolism</subject><subject>Rhodotorula - radiation effects</subject><subject>Rhodotorula glutinis</subject><subject>Studies</subject><subject>Ultraviolet Rays</subject><subject>Vitamin A</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0959-3993</issn><issn>1573-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtKAzEARYMotlY_wI0E3LgZzWOSNEsRq4WCILoOmUxap8xMah7Q_r0pU0UEV1ncc2-SA8AlRrcYIXEXMCaiLBCmBSa8LLZHYIyZoAWSghyDMZJMFlRKOgJnIawRyi1JT8GIUMoYpmIM5jPvOmh8qi1ctTtjvWthdNBo76LtXVMHWO1gCk2_ghq-frjaRedTqzOeYtM3AXYp6j6eg5OlboO9OJwT8D57fHt4LhYvT_OH-0VhGJrGQpOKaK6ZpUgaYzUpidG8XCJDBSdcYiOndZ3zpaw4tZJVOabWlqguKysEnYCbYXfj3WeyIaquCca2re6tS0FhyriknOWfTsD1H3Ttku_z6_ZUiSjDU5wpPFDGuxC8XaqNbzrtdwojtfesBs8qe1Z7z2qbO1eH5VR1tv5pfIvNABmAkKN-Zf2vq_9d_QIECYjx</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Cutzu, Raffaela</creator><creator>Coi, Annalisa</creator><creator>Rosso, Fulvia</creator><creator>Bardi, Laura</creator><creator>Ciani, Maurizio</creator><creator>Budroni, Marilena</creator><creator>Zara, Giacomo</creator><creator>Zara, Severino</creator><creator>Mannazzu, Ilaria</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20130601</creationdate><title>From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant</title><author>Cutzu, Raffaela ; Coi, Annalisa ; Rosso, Fulvia ; Bardi, Laura ; Ciani, Maurizio ; Budroni, Marilena ; Zara, Giacomo ; Zara, Severino ; Mannazzu, Ilaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-a2b2a6a5e309ccea242ca64f0c3762691c98dda5ef9b63e95bca63ee40d4be773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biodiesel fuels</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Catalysts</topic><topic>Culture Media - chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Growth conditions</topic><topic>Life Sciences</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mutagenesis</topic><topic>Original Paper</topic><topic>Peptones</topic><topic>Peptones - metabolism</topic><topic>Rhodotorula - genetics</topic><topic>Rhodotorula - growth & development</topic><topic>Rhodotorula - metabolism</topic><topic>Rhodotorula - radiation effects</topic><topic>Rhodotorula glutinis</topic><topic>Studies</topic><topic>Ultraviolet Rays</topic><topic>Vitamin A</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutzu, Raffaela</creatorcontrib><creatorcontrib>Coi, Annalisa</creatorcontrib><creatorcontrib>Rosso, Fulvia</creatorcontrib><creatorcontrib>Bardi, Laura</creatorcontrib><creatorcontrib>Ciani, Maurizio</creatorcontrib><creatorcontrib>Budroni, Marilena</creatorcontrib><creatorcontrib>Zara, Giacomo</creatorcontrib><creatorcontrib>Zara, Severino</creatorcontrib><creatorcontrib>Mannazzu, Ilaria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>World journal of microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutzu, Raffaela</au><au>Coi, Annalisa</au><au>Rosso, Fulvia</au><au>Bardi, Laura</au><au>Ciani, Maurizio</au><au>Budroni, Marilena</au><au>Zara, Giacomo</au><au>Zara, Severino</au><au>Mannazzu, Ilaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant</atitle><jtitle>World journal of microbiology & biotechnology</jtitle><stitle>World J Microbiol Biotechnol</stitle><addtitle>World J Microbiol Biotechnol</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>29</volume><issue>6</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>0959-3993</issn><eissn>1573-0972</eissn><abstract>In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of
Rhodotorula glutinis,
that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R
2
= 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (
P
< 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l
−1
) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l
−1
) (
P
< 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>23355137</pmid><doi>10.1007/s11274-013-1264-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-3993 |
ispartof | World journal of microbiology & biotechnology, 2013-06, Vol.29 (6), p.1009-1017 |
issn | 0959-3993 1573-0972 |
language | eng |
recordid | cdi_proquest_miscellaneous_1356936509 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Analysis Applied Microbiology Biochemistry Biodiesel fuels Biomass Biomedical and Life Sciences Biotechnology Carotenoids Carotenoids - metabolism Catalysts Culture Media - chemistry Environmental Engineering/Biotechnology Glycerol Glycerol - metabolism Growth conditions Life Sciences Metabolic Engineering - methods Metabolites Microbiology Microorganisms Mutagenesis Original Paper Peptones Peptones - metabolism Rhodotorula - genetics Rhodotorula - growth & development Rhodotorula - metabolism Rhodotorula - radiation effects Rhodotorula glutinis Studies Ultraviolet Rays Vitamin A Yeast Yeasts |
title | From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20crude%20glycerol%20to%20carotenoids%20by%20using%20a%20Rhodotorula%20glutinis%20mutant&rft.jtitle=World%20journal%20of%20microbiology%20&%20biotechnology&rft.au=Cutzu,%20Raffaela&rft.date=2013-06-01&rft.volume=29&rft.issue=6&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=0959-3993&rft.eissn=1573-0972&rft_id=info:doi/10.1007/s11274-013-1264-x&rft_dat=%3Cproquest_cross%3E1356936509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354035181&rft_id=info:pmid/23355137&rfr_iscdi=true |