Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development

Clinical studies have defined the core ‘genetic blueprint’ of a cancer cell, but this information does not necessarily predict the cancer phenotype. Signalling hubs that mediate such phenotype have been identified largely using OMICS platforms that measure dynamic molecular changes within the cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2013-05, Vol.32 (20), p.2499-2509
Hauptverfasser: Chevet, E, Fessart, D, Delom, F, Mulot, A, Vojtesek, B, Hrstka, R, Murray, E, Gray, T, Hupp, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2509
container_issue 20
container_start_page 2499
container_title Oncogene
container_volume 32
creator Chevet, E
Fessart, D
Delom, F
Mulot, A
Vojtesek, B
Hrstka, R
Murray, E
Gray, T
Hupp, T
description Clinical studies have defined the core ‘genetic blueprint’ of a cancer cell, but this information does not necessarily predict the cancer phenotype. Signalling hubs that mediate such phenotype have been identified largely using OMICS platforms that measure dynamic molecular changes within the cancer cell landscape. The pro-oncogenic protein anterior gradient 2 (AGR2) is a case in point; AGR2 has been shown using a range of expression platforms to be involved in asthma, inflammatory bowel disease, cell transformation, cancer drug resistance and metastatic growth. AGR2 protein is also highly overexpressed in a diverse range of human cancers and can be secreted and detected in extracellular fluids, thus representing a compelling pro-oncogenic signalling intermediate in human cancer. AGR2 belongs to the protein disulphide isomerase family with all the key features of an endoplasmic reticulum-resident protein—this gives clues into how it might function as an oncoprotein through the regulation of protein folding, maturation and secretion that can drive metastatic cell growth. In this review, we will describe the known aspects of AGR2 molecular biology, including gene structure and regulation, emerging protein interaction networks and how its subcellular localization mediates its biological functions. We will finally review the cases of AGR2 expression in human cancers, the pathophysiological consequences of AGR2 overexpression, its potential role as a tumour biomarker that predicts the response to therapy and how the AGR2 pathway might form the basis for drug discovery programmes aimed at targeting protein folding/maturation pathways that mediate secretion and metastasis.
doi_str_mv 10.1038/onc.2012.346
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1356933206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A332247098</galeid><sourcerecordid>A332247098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-2875e79256853bf3638dc5c75be147c9391ecef54d65900884903275a9cae563</originalsourceid><addsrcrecordid>eNqNksuLFDEQxoMo7rh68ywNXjzYY96P47KsD1j0sveQSVe3WbqTMekR_O-tYdYni0gOgapfffUVVYQ8Z3TLqLBvSo5bThnfCqkfkA2TRvdKOfmQbKhTtHdc8DPypLVbSqlxlD8mZ5w7qbTiG_LxaoE6pTx1tczQurHUbv0M3b6WHpXLBDnFLuQVasLUVMOQIK8971LuYsgRajfAV5jLfsH4U_JoDHODZ3f_Obl5e3Vz-b6__vTuw-XFdR-VdVhtjQLjuNJWid0otLBDVNGoHaD_6IRjEGFUctDKUWqtdFRwo4KLAZQW5-TVSRZtfjlAW_2SWoR5DhnKoXkmlHZCcPpfqKDCOW0QffkXelsONeMcnmvJFBMMbfyDQi1mjXFW_qKmMINPeSxrDfHY2l-gMS4NdRap7T0UvgGWFEuGMWH8j4LXp4JYS2sVRr-vaQn1m2fUH8_B49L88Rw8ngPiL-68HnYLDD_hH_tHoD8BDVN5gvrbMPcJfgdlZLoX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1351877984</pqid></control><display><type>article</type><title>Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chevet, E ; Fessart, D ; Delom, F ; Mulot, A ; Vojtesek, B ; Hrstka, R ; Murray, E ; Gray, T ; Hupp, T</creator><creatorcontrib>Chevet, E ; Fessart, D ; Delom, F ; Mulot, A ; Vojtesek, B ; Hrstka, R ; Murray, E ; Gray, T ; Hupp, T</creatorcontrib><description>Clinical studies have defined the core ‘genetic blueprint’ of a cancer cell, but this information does not necessarily predict the cancer phenotype. Signalling hubs that mediate such phenotype have been identified largely using OMICS platforms that measure dynamic molecular changes within the cancer cell landscape. The pro-oncogenic protein anterior gradient 2 (AGR2) is a case in point; AGR2 has been shown using a range of expression platforms to be involved in asthma, inflammatory bowel disease, cell transformation, cancer drug resistance and metastatic growth. AGR2 protein is also highly overexpressed in a diverse range of human cancers and can be secreted and detected in extracellular fluids, thus representing a compelling pro-oncogenic signalling intermediate in human cancer. AGR2 belongs to the protein disulphide isomerase family with all the key features of an endoplasmic reticulum-resident protein—this gives clues into how it might function as an oncoprotein through the regulation of protein folding, maturation and secretion that can drive metastatic cell growth. In this review, we will describe the known aspects of AGR2 molecular biology, including gene structure and regulation, emerging protein interaction networks and how its subcellular localization mediates its biological functions. We will finally review the cases of AGR2 expression in human cancers, the pathophysiological consequences of AGR2 overexpression, its potential role as a tumour biomarker that predicts the response to therapy and how the AGR2 pathway might form the basis for drug discovery programmes aimed at targeting protein folding/maturation pathways that mediate secretion and metastasis.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/onc.2012.346</identifier><identifier>PMID: 22945652</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/470/1463 ; 631/45/612/1243 ; 692/420/755 ; 692/699/67/322 ; Amino Acid Motifs ; Androgens - metabolism ; Animals ; Apoptosis ; Asthma ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Cancer ; Carcinogenesis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Biology ; Drug resistance ; Drug Resistance, Neoplasm ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Estrogens - metabolism ; Extracellular Fluid - metabolism ; Female ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Neoplastic ; Genetic transformation ; Genotype &amp; phenotype ; Human Genetics ; Humans ; Inflammatory bowel diseases ; Internal Medicine ; Localization ; Medicine ; Medicine &amp; Public Health ; Metastases ; Metastasis ; Multigene Family ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - physiopathology ; Oncology ; Phenotypes ; Physiological aspects ; Promoter Regions, Genetic ; Protein folding ; Protein Interaction Maps ; Protein structure ; Proteins - genetics ; Proteins - metabolism ; Proto-oncogenes ; review ; Secretion ; Signal transduction ; Tamoxifen - pharmacology ; Tumors</subject><ispartof>Oncogene, 2013-05, Vol.32 (20), p.2499-2509</ispartof><rights>Macmillan Publishers Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 16, 2013</rights><rights>Macmillan Publishers Limited 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-2875e79256853bf3638dc5c75be147c9391ecef54d65900884903275a9cae563</citedby><cites>FETCH-LOGICAL-c589t-2875e79256853bf3638dc5c75be147c9391ecef54d65900884903275a9cae563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22945652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chevet, E</creatorcontrib><creatorcontrib>Fessart, D</creatorcontrib><creatorcontrib>Delom, F</creatorcontrib><creatorcontrib>Mulot, A</creatorcontrib><creatorcontrib>Vojtesek, B</creatorcontrib><creatorcontrib>Hrstka, R</creatorcontrib><creatorcontrib>Murray, E</creatorcontrib><creatorcontrib>Gray, T</creatorcontrib><creatorcontrib>Hupp, T</creatorcontrib><title>Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Clinical studies have defined the core ‘genetic blueprint’ of a cancer cell, but this information does not necessarily predict the cancer phenotype. Signalling hubs that mediate such phenotype have been identified largely using OMICS platforms that measure dynamic molecular changes within the cancer cell landscape. The pro-oncogenic protein anterior gradient 2 (AGR2) is a case in point; AGR2 has been shown using a range of expression platforms to be involved in asthma, inflammatory bowel disease, cell transformation, cancer drug resistance and metastatic growth. AGR2 protein is also highly overexpressed in a diverse range of human cancers and can be secreted and detected in extracellular fluids, thus representing a compelling pro-oncogenic signalling intermediate in human cancer. AGR2 belongs to the protein disulphide isomerase family with all the key features of an endoplasmic reticulum-resident protein—this gives clues into how it might function as an oncoprotein through the regulation of protein folding, maturation and secretion that can drive metastatic cell growth. In this review, we will describe the known aspects of AGR2 molecular biology, including gene structure and regulation, emerging protein interaction networks and how its subcellular localization mediates its biological functions. We will finally review the cases of AGR2 expression in human cancers, the pathophysiological consequences of AGR2 overexpression, its potential role as a tumour biomarker that predicts the response to therapy and how the AGR2 pathway might form the basis for drug discovery programmes aimed at targeting protein folding/maturation pathways that mediate secretion and metastasis.</description><subject>631/45/470/1463</subject><subject>631/45/612/1243</subject><subject>692/420/755</subject><subject>692/699/67/322</subject><subject>Amino Acid Motifs</subject><subject>Androgens - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Asthma</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Estrogens - metabolism</subject><subject>Extracellular Fluid - metabolism</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic transformation</subject><subject>Genotype &amp; phenotype</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Inflammatory bowel diseases</subject><subject>Internal Medicine</subject><subject>Localization</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Multigene Family</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - physiopathology</subject><subject>Oncology</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic</subject><subject>Protein folding</subject><subject>Protein Interaction Maps</subject><subject>Protein structure</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proto-oncogenes</subject><subject>review</subject><subject>Secretion</subject><subject>Signal transduction</subject><subject>Tamoxifen - pharmacology</subject><subject>Tumors</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNksuLFDEQxoMo7rh68ywNXjzYY96P47KsD1j0sveQSVe3WbqTMekR_O-tYdYni0gOgapfffUVVYQ8Z3TLqLBvSo5bThnfCqkfkA2TRvdKOfmQbKhTtHdc8DPypLVbSqlxlD8mZ5w7qbTiG_LxaoE6pTx1tczQurHUbv0M3b6WHpXLBDnFLuQVasLUVMOQIK8971LuYsgRajfAV5jLfsH4U_JoDHODZ3f_Obl5e3Vz-b6__vTuw-XFdR-VdVhtjQLjuNJWid0otLBDVNGoHaD_6IRjEGFUctDKUWqtdFRwo4KLAZQW5-TVSRZtfjlAW_2SWoR5DhnKoXkmlHZCcPpfqKDCOW0QffkXelsONeMcnmvJFBMMbfyDQi1mjXFW_qKmMINPeSxrDfHY2l-gMS4NdRap7T0UvgGWFEuGMWH8j4LXp4JYS2sVRr-vaQn1m2fUH8_B49L88Rw8ngPiL-68HnYLDD_hH_tHoD8BDVN5gvrbMPcJfgdlZLoX</recordid><startdate>20130516</startdate><enddate>20130516</enddate><creator>Chevet, E</creator><creator>Fessart, D</creator><creator>Delom, F</creator><creator>Mulot, A</creator><creator>Vojtesek, B</creator><creator>Hrstka, R</creator><creator>Murray, E</creator><creator>Gray, T</creator><creator>Hupp, T</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130516</creationdate><title>Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development</title><author>Chevet, E ; Fessart, D ; Delom, F ; Mulot, A ; Vojtesek, B ; Hrstka, R ; Murray, E ; Gray, T ; Hupp, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-2875e79256853bf3638dc5c75be147c9391ecef54d65900884903275a9cae563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/45/470/1463</topic><topic>631/45/612/1243</topic><topic>692/420/755</topic><topic>692/699/67/322</topic><topic>Amino Acid Motifs</topic><topic>Androgens - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Asthma</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Estrogens - metabolism</topic><topic>Extracellular Fluid - metabolism</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic transformation</topic><topic>Genotype &amp; phenotype</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Inflammatory bowel diseases</topic><topic>Internal Medicine</topic><topic>Localization</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Multigene Family</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - physiopathology</topic><topic>Oncology</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic</topic><topic>Protein folding</topic><topic>Protein Interaction Maps</topic><topic>Protein structure</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proto-oncogenes</topic><topic>review</topic><topic>Secretion</topic><topic>Signal transduction</topic><topic>Tamoxifen - pharmacology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chevet, E</creatorcontrib><creatorcontrib>Fessart, D</creatorcontrib><creatorcontrib>Delom, F</creatorcontrib><creatorcontrib>Mulot, A</creatorcontrib><creatorcontrib>Vojtesek, B</creatorcontrib><creatorcontrib>Hrstka, R</creatorcontrib><creatorcontrib>Murray, E</creatorcontrib><creatorcontrib>Gray, T</creatorcontrib><creatorcontrib>Hupp, T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chevet, E</au><au>Fessart, D</au><au>Delom, F</au><au>Mulot, A</au><au>Vojtesek, B</au><au>Hrstka, R</au><au>Murray, E</au><au>Gray, T</au><au>Hupp, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2013-05-16</date><risdate>2013</risdate><volume>32</volume><issue>20</issue><spage>2499</spage><epage>2509</epage><pages>2499-2509</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Clinical studies have defined the core ‘genetic blueprint’ of a cancer cell, but this information does not necessarily predict the cancer phenotype. Signalling hubs that mediate such phenotype have been identified largely using OMICS platforms that measure dynamic molecular changes within the cancer cell landscape. The pro-oncogenic protein anterior gradient 2 (AGR2) is a case in point; AGR2 has been shown using a range of expression platforms to be involved in asthma, inflammatory bowel disease, cell transformation, cancer drug resistance and metastatic growth. AGR2 protein is also highly overexpressed in a diverse range of human cancers and can be secreted and detected in extracellular fluids, thus representing a compelling pro-oncogenic signalling intermediate in human cancer. AGR2 belongs to the protein disulphide isomerase family with all the key features of an endoplasmic reticulum-resident protein—this gives clues into how it might function as an oncoprotein through the regulation of protein folding, maturation and secretion that can drive metastatic cell growth. In this review, we will describe the known aspects of AGR2 molecular biology, including gene structure and regulation, emerging protein interaction networks and how its subcellular localization mediates its biological functions. We will finally review the cases of AGR2 expression in human cancers, the pathophysiological consequences of AGR2 overexpression, its potential role as a tumour biomarker that predicts the response to therapy and how the AGR2 pathway might form the basis for drug discovery programmes aimed at targeting protein folding/maturation pathways that mediate secretion and metastasis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22945652</pmid><doi>10.1038/onc.2012.346</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2013-05, Vol.32 (20), p.2499-2509
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_1356933206
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 631/45/470/1463
631/45/612/1243
692/420/755
692/699/67/322
Amino Acid Motifs
Androgens - metabolism
Animals
Apoptosis
Asthma
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Cancer
Carcinogenesis
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Biology
Drug resistance
Drug Resistance, Neoplasm
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Estrogens - metabolism
Extracellular Fluid - metabolism
Female
Gene Expression Regulation, Developmental
Gene Expression Regulation, Neoplastic
Genetic transformation
Genotype & phenotype
Human Genetics
Humans
Inflammatory bowel diseases
Internal Medicine
Localization
Medicine
Medicine & Public Health
Metastases
Metastasis
Multigene Family
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - physiopathology
Oncology
Phenotypes
Physiological aspects
Promoter Regions, Genetic
Protein folding
Protein Interaction Maps
Protein structure
Proteins - genetics
Proteins - metabolism
Proto-oncogenes
review
Secretion
Signal transduction
Tamoxifen - pharmacology
Tumors
title Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20roles%20for%20the%20pro-oncogenic%20anterior%20gradient-2%20in%20cancer%20development&rft.jtitle=Oncogene&rft.au=Chevet,%20E&rft.date=2013-05-16&rft.volume=32&rft.issue=20&rft.spage=2499&rft.epage=2509&rft.pages=2499-2509&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/onc.2012.346&rft_dat=%3Cgale_proqu%3EA332247098%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1351877984&rft_id=info:pmid/22945652&rft_galeid=A332247098&rfr_iscdi=true