Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy

Nanoparticles (NPs) coated with β‐cell‐specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Immunology and cell biology 2013-05, Vol.91 (5), p.350-359
Hauptverfasser: Sugarman, Jordan, Tsai, Sue, Santamaria, Pere, Khadra, Anmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 5
container_start_page 350
container_title Immunology and cell biology
container_volume 91
creator Sugarman, Jordan
Tsai, Sue
Santamaria, Pere
Khadra, Anmar
description Nanoparticles (NPs) coated with β‐cell‐specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low‐avidity T‐cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen‐loaded antigen‐presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a ‘resonance’‐like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T‐cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency‐dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (⩾1.6‐fold) in the NP‐dependent expansion rate of autoregulatory T‐cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ⩾8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC–NP‐based therapies.
doi_str_mv 10.1038/icb.2013.9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1356370182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4043040031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-fb4f3d522ff74857cdd7a84b6d7e8acd80feef1ba55eca99c0543df732c1ffa03</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMo9ra68QdIwI0U55qPySRZ1ovaQosIug6Z5ERT5iZjMqPMv3eGW124cHW-Hl5ezovQC0r2lHD1Nrp-zwjle_0I7WjbkoZKSh-jHVFUNbpr6Rk6r_WeECKZ4k_RGeOCKcn0DqXPs01TDEtM3_D0HXA8jrlMNjnAOeDx7vqAf9oBklve4ClPdjjtfK6AbfI4FPgxb2ecE0425dGWKboBNrViR5jXCUMI0Vm3PENPgh0qPH-oF-jrh_dfDtfN7aePN4er28ZxIXUT-jZwLxgLQbZKSOe9tKrtOy9BWecVCQCB9lYIcFZrR0TLfZCcORqCJfwCvT7pjiWv9upkjrE6GAabIM_VUC46LglVbEVf_YPe57mk1Z2hUnVMi07Ilbo8Ua7kWgsEM5Z4tGUxlJgtBbOmYLYUjF7hlw-Sc38E_xf98_YVoCfgVxxg-Y-Uubk7vNtazX8D3bKTIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786295657</pqid></control><display><type>article</type><title>Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sugarman, Jordan ; Tsai, Sue ; Santamaria, Pere ; Khadra, Anmar</creator><creatorcontrib>Sugarman, Jordan ; Tsai, Sue ; Santamaria, Pere ; Khadra, Anmar</creatorcontrib><description>Nanoparticles (NPs) coated with β‐cell‐specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low‐avidity T‐cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen‐loaded antigen‐presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a ‘resonance’‐like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T‐cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency‐dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (⩾1.6‐fold) in the NP‐dependent expansion rate of autoregulatory T‐cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ⩾8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC–NP‐based therapies.</description><identifier>ISSN: 0818-9641</identifier><identifier>EISSN: 1440-1711</identifier><identifier>DOI: 10.1038/icb.2013.9</identifier><identifier>PMID: 23528729</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Animals ; Autoantigens - administration &amp; dosage ; Autoimmune Diseases - therapy ; autoregulatory T cells ; bifurcation analysis ; biphasic response ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; Clinical Protocols ; Computational Biology ; Diabetes Mellitus, Type 1 - immunology ; Diabetes Mellitus, Type 1 - therapy ; Drug Design ; Histocompatibility Antigens Class I - immunology ; Histocompatibility Antigens Class I - therapeutic use ; Humans ; Hyperglycemia - drug therapy ; Hyperglycemia - immunology ; Insulin-Secreting Cells - immunology ; mathematical model ; Mice ; Mice, Inbred NOD ; Models, Theoretical ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Peptide Fragments - immunology ; Peptide Fragments - therapeutic use ; population of model mice ; T-Lymphocytes, Regulatory - drug effects ; T-Lymphocytes, Regulatory - immunology ; T‐cell avidity</subject><ispartof>Immunology and cell biology, 2013-05, Vol.91 (5), p.350-359</ispartof><rights>2013 Australasian Society for Immunology Inc.</rights><rights>Copyright Nature Publishing Group May 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-fb4f3d522ff74857cdd7a84b6d7e8acd80feef1ba55eca99c0543df732c1ffa03</citedby><cites>FETCH-LOGICAL-c3579-fb4f3d522ff74857cdd7a84b6d7e8acd80feef1ba55eca99c0543df732c1ffa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1038%2Ficb.2013.9$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1038%2Ficb.2013.9$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23528729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugarman, Jordan</creatorcontrib><creatorcontrib>Tsai, Sue</creatorcontrib><creatorcontrib>Santamaria, Pere</creatorcontrib><creatorcontrib>Khadra, Anmar</creatorcontrib><title>Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy</title><title>Immunology and cell biology</title><addtitle>Immunol Cell Biol</addtitle><description>Nanoparticles (NPs) coated with β‐cell‐specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low‐avidity T‐cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen‐loaded antigen‐presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a ‘resonance’‐like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T‐cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency‐dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (⩾1.6‐fold) in the NP‐dependent expansion rate of autoregulatory T‐cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ⩾8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC–NP‐based therapies.</description><subject>Animals</subject><subject>Autoantigens - administration &amp; dosage</subject><subject>Autoimmune Diseases - therapy</subject><subject>autoregulatory T cells</subject><subject>bifurcation analysis</subject><subject>biphasic response</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Clinical Protocols</subject><subject>Computational Biology</subject><subject>Diabetes Mellitus, Type 1 - immunology</subject><subject>Diabetes Mellitus, Type 1 - therapy</subject><subject>Drug Design</subject><subject>Histocompatibility Antigens Class I - immunology</subject><subject>Histocompatibility Antigens Class I - therapeutic use</subject><subject>Humans</subject><subject>Hyperglycemia - drug therapy</subject><subject>Hyperglycemia - immunology</subject><subject>Insulin-Secreting Cells - immunology</subject><subject>mathematical model</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Models, Theoretical</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Peptide Fragments - immunology</subject><subject>Peptide Fragments - therapeutic use</subject><subject>population of model mice</subject><subject>T-Lymphocytes, Regulatory - drug effects</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T‐cell avidity</subject><issn>0818-9641</issn><issn>1440-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1rFTEUhoMo9ra68QdIwI0U55qPySRZ1ovaQosIug6Z5ERT5iZjMqPMv3eGW124cHW-Hl5ezovQC0r2lHD1Nrp-zwjle_0I7WjbkoZKSh-jHVFUNbpr6Rk6r_WeECKZ4k_RGeOCKcn0DqXPs01TDEtM3_D0HXA8jrlMNjnAOeDx7vqAf9oBklve4ClPdjjtfK6AbfI4FPgxb2ecE0425dGWKboBNrViR5jXCUMI0Vm3PENPgh0qPH-oF-jrh_dfDtfN7aePN4er28ZxIXUT-jZwLxgLQbZKSOe9tKrtOy9BWecVCQCB9lYIcFZrR0TLfZCcORqCJfwCvT7pjiWv9upkjrE6GAabIM_VUC46LglVbEVf_YPe57mk1Z2hUnVMi07Ilbo8Ua7kWgsEM5Z4tGUxlJgtBbOmYLYUjF7hlw-Sc38E_xf98_YVoCfgVxxg-Y-Uubk7vNtazX8D3bKTIA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Sugarman, Jordan</creator><creator>Tsai, Sue</creator><creator>Santamaria, Pere</creator><creator>Khadra, Anmar</creator><general>Nature Publishing Group</general><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>201305</creationdate><title>Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy</title><author>Sugarman, Jordan ; Tsai, Sue ; Santamaria, Pere ; Khadra, Anmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-fb4f3d522ff74857cdd7a84b6d7e8acd80feef1ba55eca99c0543df732c1ffa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Autoantigens - administration &amp; dosage</topic><topic>Autoimmune Diseases - therapy</topic><topic>autoregulatory T cells</topic><topic>bifurcation analysis</topic><topic>biphasic response</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Clinical Protocols</topic><topic>Computational Biology</topic><topic>Diabetes Mellitus, Type 1 - immunology</topic><topic>Diabetes Mellitus, Type 1 - therapy</topic><topic>Drug Design</topic><topic>Histocompatibility Antigens Class I - immunology</topic><topic>Histocompatibility Antigens Class I - therapeutic use</topic><topic>Humans</topic><topic>Hyperglycemia - drug therapy</topic><topic>Hyperglycemia - immunology</topic><topic>Insulin-Secreting Cells - immunology</topic><topic>mathematical model</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Models, Theoretical</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Peptide Fragments - immunology</topic><topic>Peptide Fragments - therapeutic use</topic><topic>population of model mice</topic><topic>T-Lymphocytes, Regulatory - drug effects</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T‐cell avidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugarman, Jordan</creatorcontrib><creatorcontrib>Tsai, Sue</creatorcontrib><creatorcontrib>Santamaria, Pere</creatorcontrib><creatorcontrib>Khadra, Anmar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Immunology and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugarman, Jordan</au><au>Tsai, Sue</au><au>Santamaria, Pere</au><au>Khadra, Anmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy</atitle><jtitle>Immunology and cell biology</jtitle><addtitle>Immunol Cell Biol</addtitle><date>2013-05</date><risdate>2013</risdate><volume>91</volume><issue>5</issue><spage>350</spage><epage>359</epage><pages>350-359</pages><issn>0818-9641</issn><eissn>1440-1711</eissn><abstract>Nanoparticles (NPs) coated with β‐cell‐specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low‐avidity T‐cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen‐loaded antigen‐presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a ‘resonance’‐like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T‐cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency‐dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (⩾1.6‐fold) in the NP‐dependent expansion rate of autoregulatory T‐cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ⩾8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC–NP‐based therapies.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><pmid>23528729</pmid><doi>10.1038/icb.2013.9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0818-9641
ispartof Immunology and cell biology, 2013-05, Vol.91 (5), p.350-359
issn 0818-9641
1440-1711
language eng
recordid cdi_proquest_miscellaneous_1356370182
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Autoantigens - administration & dosage
Autoimmune Diseases - therapy
autoregulatory T cells
bifurcation analysis
biphasic response
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
Clinical Protocols
Computational Biology
Diabetes Mellitus, Type 1 - immunology
Diabetes Mellitus, Type 1 - therapy
Drug Design
Histocompatibility Antigens Class I - immunology
Histocompatibility Antigens Class I - therapeutic use
Humans
Hyperglycemia - drug therapy
Hyperglycemia - immunology
Insulin-Secreting Cells - immunology
mathematical model
Mice
Mice, Inbred NOD
Models, Theoretical
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Peptide Fragments - immunology
Peptide Fragments - therapeutic use
population of model mice
T-Lymphocytes, Regulatory - drug effects
T-Lymphocytes, Regulatory - immunology
T‐cell avidity
title Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20importance%20of%20pMHC%20valency,%20total%20pMHC%20dose%20and%20frequency%20on%20nanoparticle%20therapeutic%20efficacy&rft.jtitle=Immunology%20and%20cell%20biology&rft.au=Sugarman,%20Jordan&rft.date=2013-05&rft.volume=91&rft.issue=5&rft.spage=350&rft.epage=359&rft.pages=350-359&rft.issn=0818-9641&rft.eissn=1440-1711&rft_id=info:doi/10.1038/icb.2013.9&rft_dat=%3Cproquest_cross%3E4043040031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786295657&rft_id=info:pmid/23528729&rfr_iscdi=true