Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla

•Biosynthesis of silver nanoparticles (AgNPs) by bark extract of Leucas aspera.•Characterization of AgNPs by UV–vis, TEM and FTIR analysis•Analysis of antibacterial activity in vivo in Cutla cutla fish model. This research describes green synthesis of silver nanoparticles (AgNPs) utilizing Leucas as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2013-09, Vol.109, p.20-24
Hauptverfasser: Antony, Jacob Joe, Nivedheetha, Murugaiyan, Siva, Durairaj, Pradeepha, Ganesapandy, Kokilavani, Palanivel, Kalaiselvi, Seenivasan, Sankarganesh, Arunachalam, Balasundaram, Athmanathan, Masilamani, Vivekanandan, Achiraman, Shanmugam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 20
container_title Colloids and surfaces, B, Biointerfaces
container_volume 109
creator Antony, Jacob Joe
Nivedheetha, Murugaiyan
Siva, Durairaj
Pradeepha, Ganesapandy
Kokilavani, Palanivel
Kalaiselvi, Seenivasan
Sankarganesh, Arunachalam
Balasundaram, Athmanathan
Masilamani, Vivekanandan
Achiraman, Shanmugam
description •Biosynthesis of silver nanoparticles (AgNPs) by bark extract of Leucas aspera.•Characterization of AgNPs by UV–vis, TEM and FTIR analysis•Analysis of antibacterial activity in vivo in Cutla cutla fish model. This research describes green synthesis of silver nanoparticles (AgNPs) utilizing Leucas aspera. The synthesized nanoparticles were characterized by UV–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) and inductively coupled plasmon optical emission spectroscopy (ICP-OES). UV–vis analysis proved the wavelength of the sample to be 429nm, resembling the surface resonance peak (SPR) specific for AgNPs. DLS analysis indicated particles with superior stability with an average diameter of 189.3nm. TEM results showed that the particles were in the size range of 29–45nm. FTIR prediction indicated the presence of possible polyphenol and protein encapsulates on the AgNPs. Antimicrobial activity of the AgNPs was tested against Aeromonas hydrophila. Catla catla, the model organism used for the experiment was divided into six groups with 15 animals in each group. In vivo analysis of biochemical parameters and histological architecture provided evidence for the antibacterial effect of AgNPs in the fish model.
doi_str_mv 10.1016/j.colsurfb.2013.03.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1356369620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776513001963</els_id><sourcerecordid>1356369620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-663482e895841b85300f397b04090109313bc388d69ba3efb4b5dec3b6ab0fa03</originalsourceid><addsrcrecordid>eNqFkU2P2yAQhlHVqptN-xe2HHtxOhgb27dG0fZDitRDu2cEeMgS2eCCHSnS_viSZrfXSiOQ0PMO8Awhdww2DJj4dNyYMKQlWr0pgfEN5CrhFVmxtuFFxUXzmqygK5uiaUR9Q25TOgJAWbHmLbkpuQAOvF2Rp62f3ehMDNqpgSozu5ObzzRYusfFqERVmjAqiv7gPGLEniY3nDBSr3yYVJydGTBjB-V8mukWYxiDz8HHcx_D9OgGRZ3PZdHMOb1Tcz4xl_UdeWPVkPD9874mD1_uf-2-FfsfX7_vtvvC8K6cCyF41ZbYdnVbMd3WHMDyrtFQQQcMOs64Nrxte9FpxdHqStc9Gq6F0mAV8DX5eO07xfB7wTTL0SWDw6A8hiVJxmvBRSfKCyquaDaSUkQrp-hGFc-SgbyYl0f5Yl5ezEvI9Td493zHokfs_8VeVGfgwxWwKkh1iC7Jh5-5g8hjyePK31qTz1cCs4uTwyiTcegN9i5md7IP7n-v-AMDB6Nc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356369620</pqid></control><display><type>article</type><title>Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Antony, Jacob Joe ; Nivedheetha, Murugaiyan ; Siva, Durairaj ; Pradeepha, Ganesapandy ; Kokilavani, Palanivel ; Kalaiselvi, Seenivasan ; Sankarganesh, Arunachalam ; Balasundaram, Athmanathan ; Masilamani, Vivekanandan ; Achiraman, Shanmugam</creator><creatorcontrib>Antony, Jacob Joe ; Nivedheetha, Murugaiyan ; Siva, Durairaj ; Pradeepha, Ganesapandy ; Kokilavani, Palanivel ; Kalaiselvi, Seenivasan ; Sankarganesh, Arunachalam ; Balasundaram, Athmanathan ; Masilamani, Vivekanandan ; Achiraman, Shanmugam</creatorcontrib><description>•Biosynthesis of silver nanoparticles (AgNPs) by bark extract of Leucas aspera.•Characterization of AgNPs by UV–vis, TEM and FTIR analysis•Analysis of antibacterial activity in vivo in Cutla cutla fish model. This research describes green synthesis of silver nanoparticles (AgNPs) utilizing Leucas aspera. The synthesized nanoparticles were characterized by UV–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) and inductively coupled plasmon optical emission spectroscopy (ICP-OES). UV–vis analysis proved the wavelength of the sample to be 429nm, resembling the surface resonance peak (SPR) specific for AgNPs. DLS analysis indicated particles with superior stability with an average diameter of 189.3nm. TEM results showed that the particles were in the size range of 29–45nm. FTIR prediction indicated the presence of possible polyphenol and protein encapsulates on the AgNPs. Antimicrobial activity of the AgNPs was tested against Aeromonas hydrophila. Catla catla, the model organism used for the experiment was divided into six groups with 15 animals in each group. In vivo analysis of biochemical parameters and histological architecture provided evidence for the antibacterial effect of AgNPs in the fish model.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2013.03.020</identifier><identifier>PMID: 23603038</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aeromonas hydrophila ; Aeromonas hydrophila - drug effects ; Animals ; Anti-Bacterial Agents - biosynthesis ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; antibacterial properties ; Carps - microbiology ; Catla catla ; colloids ; fish ; Fourier transform infrared spectroscopy ; FTIR ; Gram-Negative Bacterial Infections - drug therapy ; Lamiaceae - chemistry ; Leucas aspera ; light scattering ; Metal Nanoparticles - chemistry ; Microbial Sensitivity Tests ; nanoparticles ; nanosilver ; Particle Size ; Plant Extracts - chemistry ; Plant Extracts - metabolism ; Plant Extracts - pharmacology ; polyphenols ; prediction ; Silver - chemistry ; Silver - metabolism ; Silver - pharmacology ; Surface Properties ; TEM ; transmission electron microscopy ; ultraviolet-visible spectroscopy ; wavelengths</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2013-09, Vol.109, p.20-24</ispartof><rights>2013</rights><rights>Copyright © 2013. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-663482e895841b85300f397b04090109313bc388d69ba3efb4b5dec3b6ab0fa03</citedby><cites>FETCH-LOGICAL-c392t-663482e895841b85300f397b04090109313bc388d69ba3efb4b5dec3b6ab0fa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927776513001963$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23603038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antony, Jacob Joe</creatorcontrib><creatorcontrib>Nivedheetha, Murugaiyan</creatorcontrib><creatorcontrib>Siva, Durairaj</creatorcontrib><creatorcontrib>Pradeepha, Ganesapandy</creatorcontrib><creatorcontrib>Kokilavani, Palanivel</creatorcontrib><creatorcontrib>Kalaiselvi, Seenivasan</creatorcontrib><creatorcontrib>Sankarganesh, Arunachalam</creatorcontrib><creatorcontrib>Balasundaram, Athmanathan</creatorcontrib><creatorcontrib>Masilamani, Vivekanandan</creatorcontrib><creatorcontrib>Achiraman, Shanmugam</creatorcontrib><title>Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>•Biosynthesis of silver nanoparticles (AgNPs) by bark extract of Leucas aspera.•Characterization of AgNPs by UV–vis, TEM and FTIR analysis•Analysis of antibacterial activity in vivo in Cutla cutla fish model. This research describes green synthesis of silver nanoparticles (AgNPs) utilizing Leucas aspera. The synthesized nanoparticles were characterized by UV–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) and inductively coupled plasmon optical emission spectroscopy (ICP-OES). UV–vis analysis proved the wavelength of the sample to be 429nm, resembling the surface resonance peak (SPR) specific for AgNPs. DLS analysis indicated particles with superior stability with an average diameter of 189.3nm. TEM results showed that the particles were in the size range of 29–45nm. FTIR prediction indicated the presence of possible polyphenol and protein encapsulates on the AgNPs. Antimicrobial activity of the AgNPs was tested against Aeromonas hydrophila. Catla catla, the model organism used for the experiment was divided into six groups with 15 animals in each group. In vivo analysis of biochemical parameters and histological architecture provided evidence for the antibacterial effect of AgNPs in the fish model.</description><subject>Aeromonas hydrophila</subject><subject>Aeromonas hydrophila - drug effects</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>antibacterial properties</subject><subject>Carps - microbiology</subject><subject>Catla catla</subject><subject>colloids</subject><subject>fish</subject><subject>Fourier transform infrared spectroscopy</subject><subject>FTIR</subject><subject>Gram-Negative Bacterial Infections - drug therapy</subject><subject>Lamiaceae - chemistry</subject><subject>Leucas aspera</subject><subject>light scattering</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microbial Sensitivity Tests</subject><subject>nanoparticles</subject><subject>nanosilver</subject><subject>Particle Size</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Extracts - metabolism</subject><subject>Plant Extracts - pharmacology</subject><subject>polyphenols</subject><subject>prediction</subject><subject>Silver - chemistry</subject><subject>Silver - metabolism</subject><subject>Silver - pharmacology</subject><subject>Surface Properties</subject><subject>TEM</subject><subject>transmission electron microscopy</subject><subject>ultraviolet-visible spectroscopy</subject><subject>wavelengths</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2P2yAQhlHVqptN-xe2HHtxOhgb27dG0fZDitRDu2cEeMgS2eCCHSnS_viSZrfXSiOQ0PMO8Awhdww2DJj4dNyYMKQlWr0pgfEN5CrhFVmxtuFFxUXzmqygK5uiaUR9Q25TOgJAWbHmLbkpuQAOvF2Rp62f3ehMDNqpgSozu5ObzzRYusfFqERVmjAqiv7gPGLEniY3nDBSr3yYVJydGTBjB-V8mukWYxiDz8HHcx_D9OgGRZ3PZdHMOb1Tcz4xl_UdeWPVkPD9874mD1_uf-2-FfsfX7_vtvvC8K6cCyF41ZbYdnVbMd3WHMDyrtFQQQcMOs64Nrxte9FpxdHqStc9Gq6F0mAV8DX5eO07xfB7wTTL0SWDw6A8hiVJxmvBRSfKCyquaDaSUkQrp-hGFc-SgbyYl0f5Yl5ezEvI9Td493zHokfs_8VeVGfgwxWwKkh1iC7Jh5-5g8hjyePK31qTz1cCs4uTwyiTcegN9i5md7IP7n-v-AMDB6Nc</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Antony, Jacob Joe</creator><creator>Nivedheetha, Murugaiyan</creator><creator>Siva, Durairaj</creator><creator>Pradeepha, Ganesapandy</creator><creator>Kokilavani, Palanivel</creator><creator>Kalaiselvi, Seenivasan</creator><creator>Sankarganesh, Arunachalam</creator><creator>Balasundaram, Athmanathan</creator><creator>Masilamani, Vivekanandan</creator><creator>Achiraman, Shanmugam</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla</title><author>Antony, Jacob Joe ; Nivedheetha, Murugaiyan ; Siva, Durairaj ; Pradeepha, Ganesapandy ; Kokilavani, Palanivel ; Kalaiselvi, Seenivasan ; Sankarganesh, Arunachalam ; Balasundaram, Athmanathan ; Masilamani, Vivekanandan ; Achiraman, Shanmugam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-663482e895841b85300f397b04090109313bc388d69ba3efb4b5dec3b6ab0fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aeromonas hydrophila</topic><topic>Aeromonas hydrophila - drug effects</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>antibacterial properties</topic><topic>Carps - microbiology</topic><topic>Catla catla</topic><topic>colloids</topic><topic>fish</topic><topic>Fourier transform infrared spectroscopy</topic><topic>FTIR</topic><topic>Gram-Negative Bacterial Infections - drug therapy</topic><topic>Lamiaceae - chemistry</topic><topic>Leucas aspera</topic><topic>light scattering</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microbial Sensitivity Tests</topic><topic>nanoparticles</topic><topic>nanosilver</topic><topic>Particle Size</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Extracts - metabolism</topic><topic>Plant Extracts - pharmacology</topic><topic>polyphenols</topic><topic>prediction</topic><topic>Silver - chemistry</topic><topic>Silver - metabolism</topic><topic>Silver - pharmacology</topic><topic>Surface Properties</topic><topic>TEM</topic><topic>transmission electron microscopy</topic><topic>ultraviolet-visible spectroscopy</topic><topic>wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antony, Jacob Joe</creatorcontrib><creatorcontrib>Nivedheetha, Murugaiyan</creatorcontrib><creatorcontrib>Siva, Durairaj</creatorcontrib><creatorcontrib>Pradeepha, Ganesapandy</creatorcontrib><creatorcontrib>Kokilavani, Palanivel</creatorcontrib><creatorcontrib>Kalaiselvi, Seenivasan</creatorcontrib><creatorcontrib>Sankarganesh, Arunachalam</creatorcontrib><creatorcontrib>Balasundaram, Athmanathan</creatorcontrib><creatorcontrib>Masilamani, Vivekanandan</creatorcontrib><creatorcontrib>Achiraman, Shanmugam</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antony, Jacob Joe</au><au>Nivedheetha, Murugaiyan</au><au>Siva, Durairaj</au><au>Pradeepha, Ganesapandy</au><au>Kokilavani, Palanivel</au><au>Kalaiselvi, Seenivasan</au><au>Sankarganesh, Arunachalam</au><au>Balasundaram, Athmanathan</au><au>Masilamani, Vivekanandan</au><au>Achiraman, Shanmugam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>109</volume><spage>20</spage><epage>24</epage><pages>20-24</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>•Biosynthesis of silver nanoparticles (AgNPs) by bark extract of Leucas aspera.•Characterization of AgNPs by UV–vis, TEM and FTIR analysis•Analysis of antibacterial activity in vivo in Cutla cutla fish model. This research describes green synthesis of silver nanoparticles (AgNPs) utilizing Leucas aspera. The synthesized nanoparticles were characterized by UV–visible spectroscopy (UV–vis), dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) and inductively coupled plasmon optical emission spectroscopy (ICP-OES). UV–vis analysis proved the wavelength of the sample to be 429nm, resembling the surface resonance peak (SPR) specific for AgNPs. DLS analysis indicated particles with superior stability with an average diameter of 189.3nm. TEM results showed that the particles were in the size range of 29–45nm. FTIR prediction indicated the presence of possible polyphenol and protein encapsulates on the AgNPs. Antimicrobial activity of the AgNPs was tested against Aeromonas hydrophila. Catla catla, the model organism used for the experiment was divided into six groups with 15 animals in each group. In vivo analysis of biochemical parameters and histological architecture provided evidence for the antibacterial effect of AgNPs in the fish model.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23603038</pmid><doi>10.1016/j.colsurfb.2013.03.020</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2013-09, Vol.109, p.20-24
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_1356369620
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aeromonas hydrophila
Aeromonas hydrophila - drug effects
Animals
Anti-Bacterial Agents - biosynthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial properties
Carps - microbiology
Catla catla
colloids
fish
Fourier transform infrared spectroscopy
FTIR
Gram-Negative Bacterial Infections - drug therapy
Lamiaceae - chemistry
Leucas aspera
light scattering
Metal Nanoparticles - chemistry
Microbial Sensitivity Tests
nanoparticles
nanosilver
Particle Size
Plant Extracts - chemistry
Plant Extracts - metabolism
Plant Extracts - pharmacology
polyphenols
prediction
Silver - chemistry
Silver - metabolism
Silver - pharmacology
Surface Properties
TEM
transmission electron microscopy
ultraviolet-visible spectroscopy
wavelengths
title Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimicrobial%20activity%20of%20Leucas%20aspera%20engineered%20silver%20nanoparticles%20against%20Aeromonas%20hydrophila%20in%20infected%20Catla%20catla&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Antony,%20Jacob%20Joe&rft.date=2013-09-01&rft.volume=109&rft.spage=20&rft.epage=24&rft.pages=20-24&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2013.03.020&rft_dat=%3Cproquest_cross%3E1356369620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356369620&rft_id=info:pmid/23603038&rft_els_id=S0927776513001963&rfr_iscdi=true