Experimentally and computationally fast method for estimation of a mean kurtosis
Purpose Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluat...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2013-06, Vol.69 (6), p.1754-1760 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1760 |
---|---|
container_issue | 6 |
container_start_page | 1754 |
container_title | Magnetic resonance in medicine |
container_volume | 69 |
creator | Hansen, Brian Lund, Torben E. Sangill, Ryan Jespersen, Sune Nørhøj |
description | Purpose
Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation.
Methods
The protocol requires acquisition of 13 standard diffusion‐weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion‐weighted images.
Results
The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan–rescan reproducibility was comparable with MK.
Conclusion
The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion‐weighting protocols. These properties make the method feasible in practically any clinical setting. |
doi_str_mv | 10.1002/mrm.24743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1355481102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3036329471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4703-246740221fd8f3c318ea77fcaa9b2849de1e182d2871dfebdc8923571959f4c63</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EgrIc-AMoEhc4BDxeavuICmURmxCIo-UmtggkcbETQf89pgUOSHAaaeabpzfzENoGfAAYk8MmNAeECUaX0AA4ITnhii2jARYM5xQUW0PrMT5jjJUSbBWtEcqlokAG6PbkfWpD1di2M3U9y0xbZoVvpn1nusq3854zscsa2z35MnM-ZDZ2VTMfZ95lJo1Mm730ofOxiptoxZk62q2vuoEexif3o7P88ub0fHR0mRdMYJoTNkzmCAFXSkcLCtIaIVxhjJoQyVRpwYIkJZECSmcnZSFVci1AceVYMaQbaG-hOw3-tU-WdFPFwta1aa3vowbKOZMAmCR09xf67PuQbksUA8E5ZXL4L5W0khGCZaL2F1QRfIzBOj1N3zNhpgHrzzB0CkPPw0jszpdiP2ls-UN-fz8Bhwvgrart7G8lfXV39S2ZLzaq2Nn3nw0TXvRQUMH14_Wpvrg9HmO4Bz2mH1nIoQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355287208</pqid></control><display><type>article</type><title>Experimentally and computationally fast method for estimation of a mean kurtosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Hansen, Brian ; Lund, Torben E. ; Sangill, Ryan ; Jespersen, Sune Nørhøj</creator><creatorcontrib>Hansen, Brian ; Lund, Torben E. ; Sangill, Ryan ; Jespersen, Sune Nørhøj</creatorcontrib><description>Purpose
Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation.
Methods
The protocol requires acquisition of 13 standard diffusion‐weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion‐weighted images.
Results
The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan–rescan reproducibility was comparable with MK.
Conclusion
The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion‐weighting protocols. These properties make the method feasible in practically any clinical setting.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24743</identifier><identifier>PMID: 23589312</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acquisitions & mergers ; Algorithms ; Brain ; Brain - anatomy & histology ; diffusion ; higher-order tensors ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; kurtosis ; Magnetic Resonance Imaging - methods ; orientational sampling ; Protocol ; Reproducibility of Results ; Sensitivity and Specificity ; Studies</subject><ispartof>Magnetic resonance in medicine, 2013-06, Vol.69 (6), p.1754-1760</ispartof><rights>Copyright © 2012 American Association for the Study of Liver Diseases</rights><rights>Copyright © 2012 American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4703-246740221fd8f3c318ea77fcaa9b2849de1e182d2871dfebdc8923571959f4c63</citedby><cites>FETCH-LOGICAL-c4703-246740221fd8f3c318ea77fcaa9b2849de1e182d2871dfebdc8923571959f4c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24743$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24743$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27915,27916,45565,45566,46400,46824</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23589312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Brian</creatorcontrib><creatorcontrib>Lund, Torben E.</creatorcontrib><creatorcontrib>Sangill, Ryan</creatorcontrib><creatorcontrib>Jespersen, Sune Nørhøj</creatorcontrib><title>Experimentally and computationally fast method for estimation of a mean kurtosis</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation.
Methods
The protocol requires acquisition of 13 standard diffusion‐weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion‐weighted images.
Results
The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan–rescan reproducibility was comparable with MK.
Conclusion
The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion‐weighting protocols. These properties make the method feasible in practically any clinical setting.</description><subject>Acquisitions & mergers</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>diffusion</subject><subject>higher-order tensors</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>kurtosis</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>orientational sampling</subject><subject>Protocol</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlPwzAQhS0EgrIc-AMoEhc4BDxeavuICmURmxCIo-UmtggkcbETQf89pgUOSHAaaeabpzfzENoGfAAYk8MmNAeECUaX0AA4ITnhii2jARYM5xQUW0PrMT5jjJUSbBWtEcqlokAG6PbkfWpD1di2M3U9y0xbZoVvpn1nusq3854zscsa2z35MnM-ZDZ2VTMfZ95lJo1Mm730ofOxiptoxZk62q2vuoEexif3o7P88ub0fHR0mRdMYJoTNkzmCAFXSkcLCtIaIVxhjJoQyVRpwYIkJZECSmcnZSFVci1AceVYMaQbaG-hOw3-tU-WdFPFwta1aa3vowbKOZMAmCR09xf67PuQbksUA8E5ZXL4L5W0khGCZaL2F1QRfIzBOj1N3zNhpgHrzzB0CkPPw0jszpdiP2ls-UN-fz8Bhwvgrart7G8lfXV39S2ZLzaq2Nn3nw0TXvRQUMH14_Wpvrg9HmO4Bz2mH1nIoQQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Hansen, Brian</creator><creator>Lund, Torben E.</creator><creator>Sangill, Ryan</creator><creator>Jespersen, Sune Nørhøj</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201306</creationdate><title>Experimentally and computationally fast method for estimation of a mean kurtosis</title><author>Hansen, Brian ; Lund, Torben E. ; Sangill, Ryan ; Jespersen, Sune Nørhøj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4703-246740221fd8f3c318ea77fcaa9b2849de1e182d2871dfebdc8923571959f4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acquisitions & mergers</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>diffusion</topic><topic>higher-order tensors</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>kurtosis</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>orientational sampling</topic><topic>Protocol</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Brian</creatorcontrib><creatorcontrib>Lund, Torben E.</creatorcontrib><creatorcontrib>Sangill, Ryan</creatorcontrib><creatorcontrib>Jespersen, Sune Nørhøj</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Brian</au><au>Lund, Torben E.</au><au>Sangill, Ryan</au><au>Jespersen, Sune Nørhøj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimentally and computationally fast method for estimation of a mean kurtosis</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2013-06</date><risdate>2013</risdate><volume>69</volume><issue>6</issue><spage>1754</spage><epage>1760</epage><pages>1754-1760</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose
Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation.
Methods
The protocol requires acquisition of 13 standard diffusion‐weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion‐weighted images.
Results
The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan–rescan reproducibility was comparable with MK.
Conclusion
The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion‐weighting protocols. These properties make the method feasible in practically any clinical setting.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23589312</pmid><doi>10.1002/mrm.24743</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2013-06, Vol.69 (6), p.1754-1760 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1355481102 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | Acquisitions & mergers Algorithms Brain Brain - anatomy & histology diffusion higher-order tensors Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods kurtosis Magnetic Resonance Imaging - methods orientational sampling Protocol Reproducibility of Results Sensitivity and Specificity Studies |
title | Experimentally and computationally fast method for estimation of a mean kurtosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimentally%20and%20computationally%20fast%20method%20for%20estimation%20of%20a%20mean%20kurtosis&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Hansen,%20Brian&rft.date=2013-06&rft.volume=69&rft.issue=6&rft.spage=1754&rft.epage=1760&rft.pages=1754-1760&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24743&rft_dat=%3Cproquest_cross%3E3036329471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355287208&rft_id=info:pmid/23589312&rfr_iscdi=true |