Experimentally and computationally fast method for estimation of a mean kurtosis

Purpose Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2013-06, Vol.69 (6), p.1754-1760
Hauptverfasser: Hansen, Brian, Lund, Torben E., Sangill, Ryan, Jespersen, Sune Nørhøj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1760
container_issue 6
container_start_page 1754
container_title Magnetic resonance in medicine
container_volume 69
creator Hansen, Brian
Lund, Torben E.
Sangill, Ryan
Jespersen, Sune Nørhøj
description Purpose Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation. Methods The protocol requires acquisition of 13 standard diffusion‐weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion‐weighted images. Results The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan–rescan reproducibility was comparable with MK. Conclusion The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion‐weighting protocols. These properties make the method feasible in practically any clinical setting.
doi_str_mv 10.1002/mrm.24743
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1355481102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3036329471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4703-246740221fd8f3c318ea77fcaa9b2849de1e182d2871dfebdc8923571959f4c63</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhS0EgrIc-AMoEhc4BDxeavuICmURmxCIo-UmtggkcbETQf89pgUOSHAaaeabpzfzENoGfAAYk8MmNAeECUaX0AA4ITnhii2jARYM5xQUW0PrMT5jjJUSbBWtEcqlokAG6PbkfWpD1di2M3U9y0xbZoVvpn1nusq3854zscsa2z35MnM-ZDZ2VTMfZ95lJo1Mm730ofOxiptoxZk62q2vuoEexif3o7P88ub0fHR0mRdMYJoTNkzmCAFXSkcLCtIaIVxhjJoQyVRpwYIkJZECSmcnZSFVci1AceVYMaQbaG-hOw3-tU-WdFPFwta1aa3vowbKOZMAmCR09xf67PuQbksUA8E5ZXL4L5W0khGCZaL2F1QRfIzBOj1N3zNhpgHrzzB0CkPPw0jszpdiP2ls-UN-fz8Bhwvgrart7G8lfXV39S2ZLzaq2Nn3nw0TXvRQUMH14_Wpvrg9HmO4Bz2mH1nIoQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355287208</pqid></control><display><type>article</type><title>Experimentally and computationally fast method for estimation of a mean kurtosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Hansen, Brian ; Lund, Torben E. ; Sangill, Ryan ; Jespersen, Sune Nørhøj</creator><creatorcontrib>Hansen, Brian ; Lund, Torben E. ; Sangill, Ryan ; Jespersen, Sune Nørhøj</creatorcontrib><description>Purpose Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation. Methods The protocol requires acquisition of 13 standard diffusion‐weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion‐weighted images. Results The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan–rescan reproducibility was comparable with MK. Conclusion The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion‐weighting protocols. These properties make the method feasible in practically any clinical setting.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.24743</identifier><identifier>PMID: 23589312</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Acquisitions &amp; mergers ; Algorithms ; Brain ; Brain - anatomy &amp; histology ; diffusion ; higher-order tensors ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; kurtosis ; Magnetic Resonance Imaging - methods ; orientational sampling ; Protocol ; Reproducibility of Results ; Sensitivity and Specificity ; Studies</subject><ispartof>Magnetic resonance in medicine, 2013-06, Vol.69 (6), p.1754-1760</ispartof><rights>Copyright © 2012 American Association for the Study of Liver Diseases</rights><rights>Copyright © 2012 American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4703-246740221fd8f3c318ea77fcaa9b2849de1e182d2871dfebdc8923571959f4c63</citedby><cites>FETCH-LOGICAL-c4703-246740221fd8f3c318ea77fcaa9b2849de1e182d2871dfebdc8923571959f4c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.24743$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.24743$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27915,27916,45565,45566,46400,46824</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23589312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Brian</creatorcontrib><creatorcontrib>Lund, Torben E.</creatorcontrib><creatorcontrib>Sangill, Ryan</creatorcontrib><creatorcontrib>Jespersen, Sune Nørhøj</creatorcontrib><title>Experimentally and computationally fast method for estimation of a mean kurtosis</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation. Methods The protocol requires acquisition of 13 standard diffusion‐weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion‐weighted images. Results The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan–rescan reproducibility was comparable with MK. Conclusion The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion‐weighting protocols. These properties make the method feasible in practically any clinical setting.</description><subject>Acquisitions &amp; mergers</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>diffusion</subject><subject>higher-order tensors</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>kurtosis</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>orientational sampling</subject><subject>Protocol</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUlPwzAQhS0EgrIc-AMoEhc4BDxeavuICmURmxCIo-UmtggkcbETQf89pgUOSHAaaeabpzfzENoGfAAYk8MmNAeECUaX0AA4ITnhii2jARYM5xQUW0PrMT5jjJUSbBWtEcqlokAG6PbkfWpD1di2M3U9y0xbZoVvpn1nusq3854zscsa2z35MnM-ZDZ2VTMfZ95lJo1Mm730ofOxiptoxZk62q2vuoEexif3o7P88ub0fHR0mRdMYJoTNkzmCAFXSkcLCtIaIVxhjJoQyVRpwYIkJZECSmcnZSFVci1AceVYMaQbaG-hOw3-tU-WdFPFwta1aa3vowbKOZMAmCR09xf67PuQbksUA8E5ZXL4L5W0khGCZaL2F1QRfIzBOj1N3zNhpgHrzzB0CkPPw0jszpdiP2ls-UN-fz8Bhwvgrart7G8lfXV39S2ZLzaq2Nn3nw0TXvRQUMH14_Wpvrg9HmO4Bz2mH1nIoQQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Hansen, Brian</creator><creator>Lund, Torben E.</creator><creator>Sangill, Ryan</creator><creator>Jespersen, Sune Nørhøj</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201306</creationdate><title>Experimentally and computationally fast method for estimation of a mean kurtosis</title><author>Hansen, Brian ; Lund, Torben E. ; Sangill, Ryan ; Jespersen, Sune Nørhøj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4703-246740221fd8f3c318ea77fcaa9b2849de1e182d2871dfebdc8923571959f4c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acquisitions &amp; mergers</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>diffusion</topic><topic>higher-order tensors</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>kurtosis</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>orientational sampling</topic><topic>Protocol</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Brian</creatorcontrib><creatorcontrib>Lund, Torben E.</creatorcontrib><creatorcontrib>Sangill, Ryan</creatorcontrib><creatorcontrib>Jespersen, Sune Nørhøj</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Brian</au><au>Lund, Torben E.</au><au>Sangill, Ryan</au><au>Jespersen, Sune Nørhøj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimentally and computationally fast method for estimation of a mean kurtosis</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2013-06</date><risdate>2013</risdate><volume>69</volume><issue>6</issue><spage>1754</spage><epage>1760</epage><pages>1754-1760</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose Results from several recent studies suggest the magnetic resonance diffusion‐derived metric mean kurtosis (MK) to be a sensitive marker for tissue pathology; however, lengthy acquisition and postprocessing time hamper further exploration. The purpose of this study is to introduce and evaluate a new MK metric and a rapid protocol for its estimation. Methods The protocol requires acquisition of 13 standard diffusion‐weighted images, followed by linear combination of log diffusion signals, thus avoiding nonlinear optimization. The method was evaluated on an ex vivo rat brain and an in vivo human brain. Parameter maps were compared with MK estimated from a standard diffusion kurtosis imaging (DKI) data set comprising 160 diffusion‐weighted images. Results The new MK displays remarkably similar contrast to MK, and the proposed protocol acquires the necessary data in less than 1 min for full human brain coverage, with a postprocessing time of a few seconds. Scan–rescan reproducibility was comparable with MK. Conclusion The framework offers a robust and rapid method for estimating MK, with a protocol easily adapted on commercial scanners, as it requires only minimal modification of standard diffusion‐weighting protocols. These properties make the method feasible in practically any clinical setting.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>23589312</pmid><doi>10.1002/mrm.24743</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2013-06, Vol.69 (6), p.1754-1760
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1355481102
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Acquisitions & mergers
Algorithms
Brain
Brain - anatomy & histology
diffusion
higher-order tensors
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
kurtosis
Magnetic Resonance Imaging - methods
orientational sampling
Protocol
Reproducibility of Results
Sensitivity and Specificity
Studies
title Experimentally and computationally fast method for estimation of a mean kurtosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimentally%20and%20computationally%20fast%20method%20for%20estimation%20of%20a%20mean%20kurtosis&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Hansen,%20Brian&rft.date=2013-06&rft.volume=69&rft.issue=6&rft.spage=1754&rft.epage=1760&rft.pages=1754-1760&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.24743&rft_dat=%3Cproquest_cross%3E3036329471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355287208&rft_id=info:pmid/23589312&rfr_iscdi=true