Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration
Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an effici...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2013-08, Vol.34 (24), p.5947-5957 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5957 |
---|---|
container_issue | 24 |
container_start_page | 5947 |
container_title | Biomaterials |
container_volume | 34 |
creator | Shi, Pujiang Teh, Thomas K.H Toh, Siew L Goh, James C.H |
description | Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an efficient carrier, supporting cell proliferation and differentiation. Meanwhile, cytocompatibility and osteoblastic gene expressions (RUNX2 and osteocalcin, for example) of rabbit's bone marrow derived mesenchymal stem cells (MSCs) are significantly boosted on LHA/silk scaffold. Further, for animal trial, almost 60% of bone volume and 80% of original mechanical strength are recovered after 4 months' bone/ligament regeneration in bone tunnel of rabbit model, where significant amount of bone tissue regeneration is also confirmed by data of histological evaluation and micro computed tomography (μ-CT). Hence, the invented scaffold is applicable for ligament/bone regeneration in future lager animal and clinical trials. |
doi_str_mv | 10.1016/j.biomaterials.2013.04.046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1355479043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014296121300505X</els_id><sourcerecordid>1355479043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-b558cb813f30cb3fd0d2b43014945bfa18896cf0f9ffeefc2c9c6939e5320b23</originalsourceid><addsrcrecordid>eNqNkV9rFTEQxYMo9lr9ChJ88mWvk7_d9UGQ2qpQ8KGl-BY22Ulvbnc3a7Ir9NubvbeK-CQMhIHfzDk5Q8gbBlsGTL_bb22IQztjCm2ftxyY2IIspZ-QDavP6ko1oJ6SDTDJq0YzfkJe5LyH0oPkz8kJF7oGofWG9Ldt2TKHONLo6bxDit6jm9fOtb0Ly0CnXczTruhRHHft6HDA8QCEYerbccaO5tDfUx9simGkfbhrD4iNI9JQgLt0kHhJnvniGF89vqfk5vLi5vxLdfXt89fzj1eVk0LNlVWqdrZmwgtwVvgOOm6lKO4bqaxvWV032nnwTbGK3nHXON2IBpXgYLk4JW-Pa6cUfyyYZzOE7LAvXjEu2TChlDxrQIqCvj-iLsWcE3ozpTC06cEwMGvYZm_-DtusYRuQpXQZfv2os9gBuz-jv9MtwKcjgOWzPwMmk13AEmAXUsnYdDH8n86Hf9a4PoyhnOceHzDv45LGdYaZzA2Y6_Xs69WZAFCgvotff9muig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355479043</pqid></control><display><type>article</type><title>Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shi, Pujiang ; Teh, Thomas K.H ; Toh, Siew L ; Goh, James C.H</creator><creatorcontrib>Shi, Pujiang ; Teh, Thomas K.H ; Toh, Siew L ; Goh, James C.H</creatorcontrib><description>Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an efficient carrier, supporting cell proliferation and differentiation. Meanwhile, cytocompatibility and osteoblastic gene expressions (RUNX2 and osteocalcin, for example) of rabbit's bone marrow derived mesenchymal stem cells (MSCs) are significantly boosted on LHA/silk scaffold. Further, for animal trial, almost 60% of bone volume and 80% of original mechanical strength are recovered after 4 months' bone/ligament regeneration in bone tunnel of rabbit model, where significant amount of bone tissue regeneration is also confirmed by data of histological evaluation and micro computed tomography (μ-CT). Hence, the invented scaffold is applicable for ligament/bone regeneration in future lager animal and clinical trials.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2013.04.046</identifier><identifier>PMID: 23680366</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Anterior Cruciate Ligament - diagnostic imaging ; Anterior Cruciate Ligament - drug effects ; Anterior Cruciate Ligament - physiology ; Bone and Bones - diagnostic imaging ; Bone and Bones - drug effects ; Bone and Bones - physiology ; Bone and regeneration ; Bone Regeneration - drug effects ; Calcium - metabolism ; Calcium Phosphates - pharmacology ; Cell Shape - drug effects ; Cell Survival - drug effects ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Crystallization ; Dentistry ; Durapatite - pharmacology ; Fibroins ; Gene Expression Regulation - drug effects ; Hydroxyapatite ; Implants, Experimental ; Ligament ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - ultrastructure ; Osseointegration - physiology ; Osteocalcin - genetics ; Osteocalcin - metabolism ; Osteonectin - genetics ; Osteonectin - metabolism ; Rabbits ; Radiography ; Silk ; Staining and Labeling ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2013-08, Vol.34 (24), p.5947-5957</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-b558cb813f30cb3fd0d2b43014945bfa18896cf0f9ffeefc2c9c6939e5320b23</citedby><cites>FETCH-LOGICAL-c435t-b558cb813f30cb3fd0d2b43014945bfa18896cf0f9ffeefc2c9c6939e5320b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2013.04.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23680366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Pujiang</creatorcontrib><creatorcontrib>Teh, Thomas K.H</creatorcontrib><creatorcontrib>Toh, Siew L</creatorcontrib><creatorcontrib>Goh, James C.H</creatorcontrib><title>Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an efficient carrier, supporting cell proliferation and differentiation. Meanwhile, cytocompatibility and osteoblastic gene expressions (RUNX2 and osteocalcin, for example) of rabbit's bone marrow derived mesenchymal stem cells (MSCs) are significantly boosted on LHA/silk scaffold. Further, for animal trial, almost 60% of bone volume and 80% of original mechanical strength are recovered after 4 months' bone/ligament regeneration in bone tunnel of rabbit model, where significant amount of bone tissue regeneration is also confirmed by data of histological evaluation and micro computed tomography (μ-CT). Hence, the invented scaffold is applicable for ligament/bone regeneration in future lager animal and clinical trials.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Anterior Cruciate Ligament - diagnostic imaging</subject><subject>Anterior Cruciate Ligament - drug effects</subject><subject>Anterior Cruciate Ligament - physiology</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Bone and Bones - drug effects</subject><subject>Bone and Bones - physiology</subject><subject>Bone and regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Calcium - metabolism</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Cell Shape - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Crystallization</subject><subject>Dentistry</subject><subject>Durapatite - pharmacology</subject><subject>Fibroins</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Hydroxyapatite</subject><subject>Implants, Experimental</subject><subject>Ligament</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - ultrastructure</subject><subject>Osseointegration - physiology</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>Osteonectin - genetics</subject><subject>Osteonectin - metabolism</subject><subject>Rabbits</subject><subject>Radiography</subject><subject>Silk</subject><subject>Staining and Labeling</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9rFTEQxYMo9lr9ChJ88mWvk7_d9UGQ2qpQ8KGl-BY22Ulvbnc3a7Ir9NubvbeK-CQMhIHfzDk5Q8gbBlsGTL_bb22IQztjCm2ftxyY2IIspZ-QDavP6ko1oJ6SDTDJq0YzfkJe5LyH0oPkz8kJF7oGofWG9Ldt2TKHONLo6bxDit6jm9fOtb0Ly0CnXczTruhRHHft6HDA8QCEYerbccaO5tDfUx9simGkfbhrD4iNI9JQgLt0kHhJnvniGF89vqfk5vLi5vxLdfXt89fzj1eVk0LNlVWqdrZmwgtwVvgOOm6lKO4bqaxvWV032nnwTbGK3nHXON2IBpXgYLk4JW-Pa6cUfyyYZzOE7LAvXjEu2TChlDxrQIqCvj-iLsWcE3ozpTC06cEwMGvYZm_-DtusYRuQpXQZfv2os9gBuz-jv9MtwKcjgOWzPwMmk13AEmAXUsnYdDH8n86Hf9a4PoyhnOceHzDv45LGdYaZzA2Y6_Xs69WZAFCgvotff9muig</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Shi, Pujiang</creator><creator>Teh, Thomas K.H</creator><creator>Toh, Siew L</creator><creator>Goh, James C.H</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration</title><author>Shi, Pujiang ; Teh, Thomas K.H ; Toh, Siew L ; Goh, James C.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-b558cb813f30cb3fd0d2b43014945bfa18896cf0f9ffeefc2c9c6939e5320b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Anterior Cruciate Ligament - diagnostic imaging</topic><topic>Anterior Cruciate Ligament - drug effects</topic><topic>Anterior Cruciate Ligament - physiology</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Bone and Bones - drug effects</topic><topic>Bone and Bones - physiology</topic><topic>Bone and regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Calcium - metabolism</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Cell Shape - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Crystallization</topic><topic>Dentistry</topic><topic>Durapatite - pharmacology</topic><topic>Fibroins</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Hydroxyapatite</topic><topic>Implants, Experimental</topic><topic>Ligament</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - ultrastructure</topic><topic>Osseointegration - physiology</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>Osteonectin - genetics</topic><topic>Osteonectin - metabolism</topic><topic>Rabbits</topic><topic>Radiography</topic><topic>Silk</topic><topic>Staining and Labeling</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Pujiang</creatorcontrib><creatorcontrib>Teh, Thomas K.H</creatorcontrib><creatorcontrib>Toh, Siew L</creatorcontrib><creatorcontrib>Goh, James C.H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Pujiang</au><au>Teh, Thomas K.H</au><au>Toh, Siew L</au><au>Goh, James C.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>34</volume><issue>24</issue><spage>5947</spage><epage>5957</epage><pages>5947-5957</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an efficient carrier, supporting cell proliferation and differentiation. Meanwhile, cytocompatibility and osteoblastic gene expressions (RUNX2 and osteocalcin, for example) of rabbit's bone marrow derived mesenchymal stem cells (MSCs) are significantly boosted on LHA/silk scaffold. Further, for animal trial, almost 60% of bone volume and 80% of original mechanical strength are recovered after 4 months' bone/ligament regeneration in bone tunnel of rabbit model, where significant amount of bone tissue regeneration is also confirmed by data of histological evaluation and micro computed tomography (μ-CT). Hence, the invented scaffold is applicable for ligament/bone regeneration in future lager animal and clinical trials.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>23680366</pmid><doi>10.1016/j.biomaterials.2013.04.046</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2013-08, Vol.34 (24), p.5947-5957 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1355479043 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Animals Anterior Cruciate Ligament - diagnostic imaging Anterior Cruciate Ligament - drug effects Anterior Cruciate Ligament - physiology Bone and Bones - diagnostic imaging Bone and Bones - drug effects Bone and Bones - physiology Bone and regeneration Bone Regeneration - drug effects Calcium - metabolism Calcium Phosphates - pharmacology Cell Shape - drug effects Cell Survival - drug effects Collagen Type I - genetics Collagen Type I - metabolism Core Binding Factor Alpha 1 Subunit - genetics Core Binding Factor Alpha 1 Subunit - metabolism Crystallization Dentistry Durapatite - pharmacology Fibroins Gene Expression Regulation - drug effects Hydroxyapatite Implants, Experimental Ligament Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - drug effects Mesenchymal Stromal Cells - ultrastructure Osseointegration - physiology Osteocalcin - genetics Osteocalcin - metabolism Osteonectin - genetics Osteonectin - metabolism Rabbits Radiography Silk Staining and Labeling Tissue Scaffolds - chemistry |
title | Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20of%20the%20effect%20of%20calcium%20phosphate%20enhancement%20of%20implanted%20silk%20fibroin%20ligament%20bone%20integration&rft.jtitle=Biomaterials&rft.au=Shi,%20Pujiang&rft.date=2013-08-01&rft.volume=34&rft.issue=24&rft.spage=5947&rft.epage=5957&rft.pages=5947-5957&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2013.04.046&rft_dat=%3Cproquest_cross%3E1355479043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355479043&rft_id=info:pmid/23680366&rft_els_id=S014296121300505X&rfr_iscdi=true |