Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration

Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2013-08, Vol.34 (24), p.5947-5957
Hauptverfasser: Shi, Pujiang, Teh, Thomas K.H, Toh, Siew L, Goh, James C.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5957
container_issue 24
container_start_page 5947
container_title Biomaterials
container_volume 34
creator Shi, Pujiang
Teh, Thomas K.H
Toh, Siew L
Goh, James C.H
description Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an efficient carrier, supporting cell proliferation and differentiation. Meanwhile, cytocompatibility and osteoblastic gene expressions (RUNX2 and osteocalcin, for example) of rabbit's bone marrow derived mesenchymal stem cells (MSCs) are significantly boosted on LHA/silk scaffold. Further, for animal trial, almost 60% of bone volume and 80% of original mechanical strength are recovered after 4 months' bone/ligament regeneration in bone tunnel of rabbit model, where significant amount of bone tissue regeneration is also confirmed by data of histological evaluation and micro computed tomography (μ-CT). Hence, the invented scaffold is applicable for ligament/bone regeneration in future lager animal and clinical trials.
doi_str_mv 10.1016/j.biomaterials.2013.04.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1355479043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014296121300505X</els_id><sourcerecordid>1355479043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-b558cb813f30cb3fd0d2b43014945bfa18896cf0f9ffeefc2c9c6939e5320b23</originalsourceid><addsrcrecordid>eNqNkV9rFTEQxYMo9lr9ChJ88mWvk7_d9UGQ2qpQ8KGl-BY22Ulvbnc3a7Ir9NubvbeK-CQMhIHfzDk5Q8gbBlsGTL_bb22IQztjCm2ftxyY2IIspZ-QDavP6ko1oJ6SDTDJq0YzfkJe5LyH0oPkz8kJF7oGofWG9Ldt2TKHONLo6bxDit6jm9fOtb0Ly0CnXczTruhRHHft6HDA8QCEYerbccaO5tDfUx9simGkfbhrD4iNI9JQgLt0kHhJnvniGF89vqfk5vLi5vxLdfXt89fzj1eVk0LNlVWqdrZmwgtwVvgOOm6lKO4bqaxvWV032nnwTbGK3nHXON2IBpXgYLk4JW-Pa6cUfyyYZzOE7LAvXjEu2TChlDxrQIqCvj-iLsWcE3ozpTC06cEwMGvYZm_-DtusYRuQpXQZfv2os9gBuz-jv9MtwKcjgOWzPwMmk13AEmAXUsnYdDH8n86Hf9a4PoyhnOceHzDv45LGdYaZzA2Y6_Xs69WZAFCgvotff9muig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355479043</pqid></control><display><type>article</type><title>Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Shi, Pujiang ; Teh, Thomas K.H ; Toh, Siew L ; Goh, James C.H</creator><creatorcontrib>Shi, Pujiang ; Teh, Thomas K.H ; Toh, Siew L ; Goh, James C.H</creatorcontrib><description>Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an efficient carrier, supporting cell proliferation and differentiation. Meanwhile, cytocompatibility and osteoblastic gene expressions (RUNX2 and osteocalcin, for example) of rabbit's bone marrow derived mesenchymal stem cells (MSCs) are significantly boosted on LHA/silk scaffold. Further, for animal trial, almost 60% of bone volume and 80% of original mechanical strength are recovered after 4 months' bone/ligament regeneration in bone tunnel of rabbit model, where significant amount of bone tissue regeneration is also confirmed by data of histological evaluation and micro computed tomography (μ-CT). Hence, the invented scaffold is applicable for ligament/bone regeneration in future lager animal and clinical trials.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2013.04.046</identifier><identifier>PMID: 23680366</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Anterior Cruciate Ligament - diagnostic imaging ; Anterior Cruciate Ligament - drug effects ; Anterior Cruciate Ligament - physiology ; Bone and Bones - diagnostic imaging ; Bone and Bones - drug effects ; Bone and Bones - physiology ; Bone and regeneration ; Bone Regeneration - drug effects ; Calcium - metabolism ; Calcium Phosphates - pharmacology ; Cell Shape - drug effects ; Cell Survival - drug effects ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Crystallization ; Dentistry ; Durapatite - pharmacology ; Fibroins ; Gene Expression Regulation - drug effects ; Hydroxyapatite ; Implants, Experimental ; Ligament ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - drug effects ; Mesenchymal Stromal Cells - ultrastructure ; Osseointegration - physiology ; Osteocalcin - genetics ; Osteocalcin - metabolism ; Osteonectin - genetics ; Osteonectin - metabolism ; Rabbits ; Radiography ; Silk ; Staining and Labeling ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2013-08, Vol.34 (24), p.5947-5957</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-b558cb813f30cb3fd0d2b43014945bfa18896cf0f9ffeefc2c9c6939e5320b23</citedby><cites>FETCH-LOGICAL-c435t-b558cb813f30cb3fd0d2b43014945bfa18896cf0f9ffeefc2c9c6939e5320b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2013.04.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23680366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Pujiang</creatorcontrib><creatorcontrib>Teh, Thomas K.H</creatorcontrib><creatorcontrib>Toh, Siew L</creatorcontrib><creatorcontrib>Goh, James C.H</creatorcontrib><title>Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an efficient carrier, supporting cell proliferation and differentiation. Meanwhile, cytocompatibility and osteoblastic gene expressions (RUNX2 and osteocalcin, for example) of rabbit's bone marrow derived mesenchymal stem cells (MSCs) are significantly boosted on LHA/silk scaffold. Further, for animal trial, almost 60% of bone volume and 80% of original mechanical strength are recovered after 4 months' bone/ligament regeneration in bone tunnel of rabbit model, where significant amount of bone tissue regeneration is also confirmed by data of histological evaluation and micro computed tomography (μ-CT). Hence, the invented scaffold is applicable for ligament/bone regeneration in future lager animal and clinical trials.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Anterior Cruciate Ligament - diagnostic imaging</subject><subject>Anterior Cruciate Ligament - drug effects</subject><subject>Anterior Cruciate Ligament - physiology</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Bone and Bones - drug effects</subject><subject>Bone and Bones - physiology</subject><subject>Bone and regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>Calcium - metabolism</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Cell Shape - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Crystallization</subject><subject>Dentistry</subject><subject>Durapatite - pharmacology</subject><subject>Fibroins</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Hydroxyapatite</subject><subject>Implants, Experimental</subject><subject>Ligament</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - drug effects</subject><subject>Mesenchymal Stromal Cells - ultrastructure</subject><subject>Osseointegration - physiology</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>Osteonectin - genetics</subject><subject>Osteonectin - metabolism</subject><subject>Rabbits</subject><subject>Radiography</subject><subject>Silk</subject><subject>Staining and Labeling</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9rFTEQxYMo9lr9ChJ88mWvk7_d9UGQ2qpQ8KGl-BY22Ulvbnc3a7Ir9NubvbeK-CQMhIHfzDk5Q8gbBlsGTL_bb22IQztjCm2ftxyY2IIspZ-QDavP6ko1oJ6SDTDJq0YzfkJe5LyH0oPkz8kJF7oGofWG9Ldt2TKHONLo6bxDit6jm9fOtb0Ly0CnXczTruhRHHft6HDA8QCEYerbccaO5tDfUx9simGkfbhrD4iNI9JQgLt0kHhJnvniGF89vqfk5vLi5vxLdfXt89fzj1eVk0LNlVWqdrZmwgtwVvgOOm6lKO4bqaxvWV032nnwTbGK3nHXON2IBpXgYLk4JW-Pa6cUfyyYZzOE7LAvXjEu2TChlDxrQIqCvj-iLsWcE3ozpTC06cEwMGvYZm_-DtusYRuQpXQZfv2os9gBuz-jv9MtwKcjgOWzPwMmk13AEmAXUsnYdDH8n86Hf9a4PoyhnOceHzDv45LGdYaZzA2Y6_Xs69WZAFCgvotff9muig</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Shi, Pujiang</creator><creator>Teh, Thomas K.H</creator><creator>Toh, Siew L</creator><creator>Goh, James C.H</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration</title><author>Shi, Pujiang ; Teh, Thomas K.H ; Toh, Siew L ; Goh, James C.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-b558cb813f30cb3fd0d2b43014945bfa18896cf0f9ffeefc2c9c6939e5320b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Anterior Cruciate Ligament - diagnostic imaging</topic><topic>Anterior Cruciate Ligament - drug effects</topic><topic>Anterior Cruciate Ligament - physiology</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Bone and Bones - drug effects</topic><topic>Bone and Bones - physiology</topic><topic>Bone and regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>Calcium - metabolism</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Cell Shape - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Crystallization</topic><topic>Dentistry</topic><topic>Durapatite - pharmacology</topic><topic>Fibroins</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Hydroxyapatite</topic><topic>Implants, Experimental</topic><topic>Ligament</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - drug effects</topic><topic>Mesenchymal Stromal Cells - ultrastructure</topic><topic>Osseointegration - physiology</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>Osteonectin - genetics</topic><topic>Osteonectin - metabolism</topic><topic>Rabbits</topic><topic>Radiography</topic><topic>Silk</topic><topic>Staining and Labeling</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Pujiang</creatorcontrib><creatorcontrib>Teh, Thomas K.H</creatorcontrib><creatorcontrib>Toh, Siew L</creatorcontrib><creatorcontrib>Goh, James C.H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Pujiang</au><au>Teh, Thomas K.H</au><au>Toh, Siew L</au><au>Goh, James C.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>34</volume><issue>24</issue><spage>5947</spage><epage>5957</epage><pages>5947-5957</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract In this article, low crystallinity hydroxyapatite (LHA) is developed and utilized to modify silk fibroin scaffolds which are applied to repair bone/ligament defects successfully. It can promote osteogenesis which is authenticated through in vitro and in vivo tests. The scaffold is an efficient carrier, supporting cell proliferation and differentiation. Meanwhile, cytocompatibility and osteoblastic gene expressions (RUNX2 and osteocalcin, for example) of rabbit's bone marrow derived mesenchymal stem cells (MSCs) are significantly boosted on LHA/silk scaffold. Further, for animal trial, almost 60% of bone volume and 80% of original mechanical strength are recovered after 4 months' bone/ligament regeneration in bone tunnel of rabbit model, where significant amount of bone tissue regeneration is also confirmed by data of histological evaluation and micro computed tomography (μ-CT). Hence, the invented scaffold is applicable for ligament/bone regeneration in future lager animal and clinical trials.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>23680366</pmid><doi>10.1016/j.biomaterials.2013.04.046</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2013-08, Vol.34 (24), p.5947-5957
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1355479043
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Anterior Cruciate Ligament - diagnostic imaging
Anterior Cruciate Ligament - drug effects
Anterior Cruciate Ligament - physiology
Bone and Bones - diagnostic imaging
Bone and Bones - drug effects
Bone and Bones - physiology
Bone and regeneration
Bone Regeneration - drug effects
Calcium - metabolism
Calcium Phosphates - pharmacology
Cell Shape - drug effects
Cell Survival - drug effects
Collagen Type I - genetics
Collagen Type I - metabolism
Core Binding Factor Alpha 1 Subunit - genetics
Core Binding Factor Alpha 1 Subunit - metabolism
Crystallization
Dentistry
Durapatite - pharmacology
Fibroins
Gene Expression Regulation - drug effects
Hydroxyapatite
Implants, Experimental
Ligament
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - drug effects
Mesenchymal Stromal Cells - ultrastructure
Osseointegration - physiology
Osteocalcin - genetics
Osteocalcin - metabolism
Osteonectin - genetics
Osteonectin - metabolism
Rabbits
Radiography
Silk
Staining and Labeling
Tissue Scaffolds - chemistry
title Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20of%20the%20effect%20of%20calcium%20phosphate%20enhancement%20of%20implanted%20silk%20fibroin%20ligament%20bone%20integration&rft.jtitle=Biomaterials&rft.au=Shi,%20Pujiang&rft.date=2013-08-01&rft.volume=34&rft.issue=24&rft.spage=5947&rft.epage=5957&rft.pages=5947-5957&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2013.04.046&rft_dat=%3Cproquest_cross%3E1355479043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355479043&rft_id=info:pmid/23680366&rft_els_id=S014296121300505X&rfr_iscdi=true