Stimuli-responsive selection of target DNA sequences by synthetic bZIP peptides

One of the strategies used by nature to regulate gene expression relies on the stimuli-controlled combination of DNA-binding proteins. This in turn determines the target-binding site within the genome, and thereby whether a particular gene is activated or repressed. Here we demonstrate how a designe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013-05, Vol.4 (1), p.1874-1874, Article 1874
Hauptverfasser: Mosquera, Jesús, Jiménez-Balsa, Adrián, Dodero, Verónica I, Vázquez, M Eugenio, Mascareñas, José L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the strategies used by nature to regulate gene expression relies on the stimuli-controlled combination of DNA-binding proteins. This in turn determines the target-binding site within the genome, and thereby whether a particular gene is activated or repressed. Here we demonstrate how a designed basic region leucine zipper-based peptide can be directed towards two different DNA sequences depending on its dimerization arrangement. While the monomeric peptide is non-functional, a C-terminal metallo-dimer recognizes the natural ATF/CREB-binding site (5′-ATGA cg TCAT-3′), and a N-terminal disulphide dimer binds preferentially to the swapped sequence (5′-TCAT cg ATGA-3′). As the dimerization mode can be efficiently controlled by appropriate external reagents, it is possible to reversibly drive the peptide to either DNA site in response to such specific inputs. This represents the first example of a designed molecule that can bind to more than one specific DNA sequence depending on changes in its environment. The expression of specific genes can be controlled by the combination of DNA-binding proteins, which determines their binding site selectivity. Here, simplified synthetic basic region leucine zipper-based peptides are induced to dimerize either through their C- or N-terminus, and thus are targeted to different DNA sequences.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms2825