Physico-chemical solid-state characterization of pharmaceutical pyrazolones: An unexpected thermal behaviour

•The thermal behaviour of phenazone, aminophenazone and phenylbutazone was studied.•Despite their similar molecular structures, the thermal behaviour is different.•It was proved that formation of CO2 does not involve atmospheric oxygen.•The three active substances were compatible with the used excip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical and biomedical analysis 2013-07, Vol.81-82, p.44-49
Hauptverfasser: Fuliaş, Adriana, Ledeţi, Ionuţ, Vlase, Gabriela, Vlase, Titus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue
container_start_page 44
container_title Journal of pharmaceutical and biomedical analysis
container_volume 81-82
creator Fuliaş, Adriana
Ledeţi, Ionuţ
Vlase, Gabriela
Vlase, Titus
description •The thermal behaviour of phenazone, aminophenazone and phenylbutazone was studied.•Despite their similar molecular structures, the thermal behaviour is different.•It was proved that formation of CO2 does not involve atmospheric oxygen.•The three active substances were compatible with the used excipients. In this work, the thermal behaviour of three active substances (phenazone, aminophenazone, phenylbutazone) was studied by drawing up the TG/DTG/DTA curves in air/nitrogen atmosphere at 10°Cmin−1 heating rate. The information on the thermal-induced events was corroborated with the IR spectra of the solid samples (pharmaceutical compounds and the remaining chars after heating treatment), respectively with the ones obtained by evolved gases analysis (EGA). The data on a possible drug–excipient interaction were obtained from the thermoanalytical study of mixtures of these active compounds with talc, magnesium stearate, starch and microcrystalline cellulose. No changes were observed by TG/DTG/DTA curves of mixtures in comparison with the pure compound. Even if the three active substances contain the same heterocyclic ring, having similar molecular structures, their thermal behaviour is not similar. According to thermal and evolved gas analysis, it was proved that formation of CO2 does not involve atmospheric oxygen. By stoichiometric means, the molecular breakdown of aminophenazone can generate only carbon monoxide, which undergoes disproportionation, generating CO2.
doi_str_mv 10.1016/j.jpba.2013.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1354791063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0731708513001362</els_id><sourcerecordid>1354791063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-f8b92975181cf85d3622dc6c77087cfbfef36fa9c9254c98419aca858d0342d83</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERbeFP8ABcuSSrT_ixEFcqgpapEogQSVuljMeE6-SONhJxfbX4-0WjkgjjTR65tXMQ8hrRreMsvpit93NndlyysSW5mLqGdkw1YiS19WP52RDG8HKhip5Ss5S2lFKJWurF-SUi5oK1TYbMnzt98lDKKHH0YMZihQGb8u0mAUL6E00sGD0D2bxYSqCK-Y8Gw3gujzi8z6ahzCECdP74nIq1gl_z5h3bLH0mMmh6LA39z6s8SU5cWZI-Oqpn5O7Tx-_X92Ut1-uP19d3pYgFF1Kp7qWt41kioFT0oqacws1NPmVBlzn0InamRZaLitoVcVaA0ZJZamouFXinLw75s4x_FoxLXr0CXAYzIRhTZoJWTUto7XIKD-iEENKEZ2eox9N3GtG9cGy3umDZX2wrGkudsh_85S_diPafyt_tWbg7RFwJmjzM_qk777lBEkp40wynokPRwKzh3uPUSfwOAFaH7M9bYP_3wV_AF4smWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354791063</pqid></control><display><type>article</type><title>Physico-chemical solid-state characterization of pharmaceutical pyrazolones: An unexpected thermal behaviour</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Fuliaş, Adriana ; Ledeţi, Ionuţ ; Vlase, Gabriela ; Vlase, Titus</creator><creatorcontrib>Fuliaş, Adriana ; Ledeţi, Ionuţ ; Vlase, Gabriela ; Vlase, Titus</creatorcontrib><description>•The thermal behaviour of phenazone, aminophenazone and phenylbutazone was studied.•Despite their similar molecular structures, the thermal behaviour is different.•It was proved that formation of CO2 does not involve atmospheric oxygen.•The three active substances were compatible with the used excipients. In this work, the thermal behaviour of three active substances (phenazone, aminophenazone, phenylbutazone) was studied by drawing up the TG/DTG/DTA curves in air/nitrogen atmosphere at 10°Cmin−1 heating rate. The information on the thermal-induced events was corroborated with the IR spectra of the solid samples (pharmaceutical compounds and the remaining chars after heating treatment), respectively with the ones obtained by evolved gases analysis (EGA). The data on a possible drug–excipient interaction were obtained from the thermoanalytical study of mixtures of these active compounds with talc, magnesium stearate, starch and microcrystalline cellulose. No changes were observed by TG/DTG/DTA curves of mixtures in comparison with the pure compound. Even if the three active substances contain the same heterocyclic ring, having similar molecular structures, their thermal behaviour is not similar. According to thermal and evolved gas analysis, it was proved that formation of CO2 does not involve atmospheric oxygen. By stoichiometric means, the molecular breakdown of aminophenazone can generate only carbon monoxide, which undergoes disproportionation, generating CO2.</description><identifier>ISSN: 0731-7085</identifier><identifier>EISSN: 1873-264X</identifier><identifier>DOI: 10.1016/j.jpba.2013.03.018</identifier><identifier>PMID: 23603897</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>active ingredients ; air ; Aminopyrine - chemistry ; Anti-Inflammatory Agents, Non-Steroidal - chemistry ; antipyrine ; Antipyrine - chemistry ; carbon dioxide ; Carbon Dioxide - chemistry ; carbon monoxide ; Carbon Monoxide - chemistry ; cellulose ; chemical structure ; Differential Thermal Analysis ; Drug–excipient interaction ; Excipients - chemistry ; heat ; magnesium ; nitrogen ; oxygen ; Phenazones ; phenylbutazone ; Phenylbutazone - chemistry ; Pyrazole derivatives ; Spectrophotometry, Infrared ; starch ; stearic acid ; talc ; Temperature ; TG/DTG/DTA ; Thermal behaviour ; thermal properties ; Thermogravimetry</subject><ispartof>Journal of pharmaceutical and biomedical analysis, 2013-07, Vol.81-82, p.44-49</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-f8b92975181cf85d3622dc6c77087cfbfef36fa9c9254c98419aca858d0342d83</citedby><cites>FETCH-LOGICAL-c380t-f8b92975181cf85d3622dc6c77087cfbfef36fa9c9254c98419aca858d0342d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpba.2013.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23603897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuliaş, Adriana</creatorcontrib><creatorcontrib>Ledeţi, Ionuţ</creatorcontrib><creatorcontrib>Vlase, Gabriela</creatorcontrib><creatorcontrib>Vlase, Titus</creatorcontrib><title>Physico-chemical solid-state characterization of pharmaceutical pyrazolones: An unexpected thermal behaviour</title><title>Journal of pharmaceutical and biomedical analysis</title><addtitle>J Pharm Biomed Anal</addtitle><description>•The thermal behaviour of phenazone, aminophenazone and phenylbutazone was studied.•Despite their similar molecular structures, the thermal behaviour is different.•It was proved that formation of CO2 does not involve atmospheric oxygen.•The three active substances were compatible with the used excipients. In this work, the thermal behaviour of three active substances (phenazone, aminophenazone, phenylbutazone) was studied by drawing up the TG/DTG/DTA curves in air/nitrogen atmosphere at 10°Cmin−1 heating rate. The information on the thermal-induced events was corroborated with the IR spectra of the solid samples (pharmaceutical compounds and the remaining chars after heating treatment), respectively with the ones obtained by evolved gases analysis (EGA). The data on a possible drug–excipient interaction were obtained from the thermoanalytical study of mixtures of these active compounds with talc, magnesium stearate, starch and microcrystalline cellulose. No changes were observed by TG/DTG/DTA curves of mixtures in comparison with the pure compound. Even if the three active substances contain the same heterocyclic ring, having similar molecular structures, their thermal behaviour is not similar. According to thermal and evolved gas analysis, it was proved that formation of CO2 does not involve atmospheric oxygen. By stoichiometric means, the molecular breakdown of aminophenazone can generate only carbon monoxide, which undergoes disproportionation, generating CO2.</description><subject>active ingredients</subject><subject>air</subject><subject>Aminopyrine - chemistry</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - chemistry</subject><subject>antipyrine</subject><subject>Antipyrine - chemistry</subject><subject>carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>carbon monoxide</subject><subject>Carbon Monoxide - chemistry</subject><subject>cellulose</subject><subject>chemical structure</subject><subject>Differential Thermal Analysis</subject><subject>Drug–excipient interaction</subject><subject>Excipients - chemistry</subject><subject>heat</subject><subject>magnesium</subject><subject>nitrogen</subject><subject>oxygen</subject><subject>Phenazones</subject><subject>phenylbutazone</subject><subject>Phenylbutazone - chemistry</subject><subject>Pyrazole derivatives</subject><subject>Spectrophotometry, Infrared</subject><subject>starch</subject><subject>stearic acid</subject><subject>talc</subject><subject>Temperature</subject><subject>TG/DTG/DTA</subject><subject>Thermal behaviour</subject><subject>thermal properties</subject><subject>Thermogravimetry</subject><issn>0731-7085</issn><issn>1873-264X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1ERbeFP8ABcuSSrT_ixEFcqgpapEogQSVuljMeE6-SONhJxfbX4-0WjkgjjTR65tXMQ8hrRreMsvpit93NndlyysSW5mLqGdkw1YiS19WP52RDG8HKhip5Ss5S2lFKJWurF-SUi5oK1TYbMnzt98lDKKHH0YMZihQGb8u0mAUL6E00sGD0D2bxYSqCK-Y8Gw3gujzi8z6ahzCECdP74nIq1gl_z5h3bLH0mMmh6LA39z6s8SU5cWZI-Oqpn5O7Tx-_X92Ut1-uP19d3pYgFF1Kp7qWt41kioFT0oqacws1NPmVBlzn0InamRZaLitoVcVaA0ZJZamouFXinLw75s4x_FoxLXr0CXAYzIRhTZoJWTUto7XIKD-iEENKEZ2eox9N3GtG9cGy3umDZX2wrGkudsh_85S_diPafyt_tWbg7RFwJmjzM_qk777lBEkp40wynokPRwKzh3uPUSfwOAFaH7M9bYP_3wV_AF4smWc</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Fuliaş, Adriana</creator><creator>Ledeţi, Ionuţ</creator><creator>Vlase, Gabriela</creator><creator>Vlase, Titus</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130701</creationdate><title>Physico-chemical solid-state characterization of pharmaceutical pyrazolones: An unexpected thermal behaviour</title><author>Fuliaş, Adriana ; Ledeţi, Ionuţ ; Vlase, Gabriela ; Vlase, Titus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-f8b92975181cf85d3622dc6c77087cfbfef36fa9c9254c98419aca858d0342d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>active ingredients</topic><topic>air</topic><topic>Aminopyrine - chemistry</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - chemistry</topic><topic>antipyrine</topic><topic>Antipyrine - chemistry</topic><topic>carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>carbon monoxide</topic><topic>Carbon Monoxide - chemistry</topic><topic>cellulose</topic><topic>chemical structure</topic><topic>Differential Thermal Analysis</topic><topic>Drug–excipient interaction</topic><topic>Excipients - chemistry</topic><topic>heat</topic><topic>magnesium</topic><topic>nitrogen</topic><topic>oxygen</topic><topic>Phenazones</topic><topic>phenylbutazone</topic><topic>Phenylbutazone - chemistry</topic><topic>Pyrazole derivatives</topic><topic>Spectrophotometry, Infrared</topic><topic>starch</topic><topic>stearic acid</topic><topic>talc</topic><topic>Temperature</topic><topic>TG/DTG/DTA</topic><topic>Thermal behaviour</topic><topic>thermal properties</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuliaş, Adriana</creatorcontrib><creatorcontrib>Ledeţi, Ionuţ</creatorcontrib><creatorcontrib>Vlase, Gabriela</creatorcontrib><creatorcontrib>Vlase, Titus</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical and biomedical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuliaş, Adriana</au><au>Ledeţi, Ionuţ</au><au>Vlase, Gabriela</au><au>Vlase, Titus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physico-chemical solid-state characterization of pharmaceutical pyrazolones: An unexpected thermal behaviour</atitle><jtitle>Journal of pharmaceutical and biomedical analysis</jtitle><addtitle>J Pharm Biomed Anal</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>81-82</volume><spage>44</spage><epage>49</epage><pages>44-49</pages><issn>0731-7085</issn><eissn>1873-264X</eissn><abstract>•The thermal behaviour of phenazone, aminophenazone and phenylbutazone was studied.•Despite their similar molecular structures, the thermal behaviour is different.•It was proved that formation of CO2 does not involve atmospheric oxygen.•The three active substances were compatible with the used excipients. In this work, the thermal behaviour of three active substances (phenazone, aminophenazone, phenylbutazone) was studied by drawing up the TG/DTG/DTA curves in air/nitrogen atmosphere at 10°Cmin−1 heating rate. The information on the thermal-induced events was corroborated with the IR spectra of the solid samples (pharmaceutical compounds and the remaining chars after heating treatment), respectively with the ones obtained by evolved gases analysis (EGA). The data on a possible drug–excipient interaction were obtained from the thermoanalytical study of mixtures of these active compounds with talc, magnesium stearate, starch and microcrystalline cellulose. No changes were observed by TG/DTG/DTA curves of mixtures in comparison with the pure compound. Even if the three active substances contain the same heterocyclic ring, having similar molecular structures, their thermal behaviour is not similar. According to thermal and evolved gas analysis, it was proved that formation of CO2 does not involve atmospheric oxygen. By stoichiometric means, the molecular breakdown of aminophenazone can generate only carbon monoxide, which undergoes disproportionation, generating CO2.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>23603897</pmid><doi>10.1016/j.jpba.2013.03.018</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-7085
ispartof Journal of pharmaceutical and biomedical analysis, 2013-07, Vol.81-82, p.44-49
issn 0731-7085
1873-264X
language eng
recordid cdi_proquest_miscellaneous_1354791063
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects active ingredients
air
Aminopyrine - chemistry
Anti-Inflammatory Agents, Non-Steroidal - chemistry
antipyrine
Antipyrine - chemistry
carbon dioxide
Carbon Dioxide - chemistry
carbon monoxide
Carbon Monoxide - chemistry
cellulose
chemical structure
Differential Thermal Analysis
Drug–excipient interaction
Excipients - chemistry
heat
magnesium
nitrogen
oxygen
Phenazones
phenylbutazone
Phenylbutazone - chemistry
Pyrazole derivatives
Spectrophotometry, Infrared
starch
stearic acid
talc
Temperature
TG/DTG/DTA
Thermal behaviour
thermal properties
Thermogravimetry
title Physico-chemical solid-state characterization of pharmaceutical pyrazolones: An unexpected thermal behaviour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physico-chemical%20solid-state%20characterization%20of%20pharmaceutical%20pyrazolones:%20An%20unexpected%20thermal%20behaviour&rft.jtitle=Journal%20of%20pharmaceutical%20and%20biomedical%20analysis&rft.au=Fulia%C5%9F,%20Adriana&rft.date=2013-07-01&rft.volume=81-82&rft.spage=44&rft.epage=49&rft.pages=44-49&rft.issn=0731-7085&rft.eissn=1873-264X&rft_id=info:doi/10.1016/j.jpba.2013.03.018&rft_dat=%3Cproquest_cross%3E1354791063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354791063&rft_id=info:pmid/23603897&rft_els_id=S0731708513001362&rfr_iscdi=true