Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum

Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2001-01, Vol.2 (1), p.55-59
Hauptverfasser: Jarvis, Emily A. A., Hayes, Robin L., Carter, Emily A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 55
container_title Chemphyschem
container_volume 2
creator Jarvis, Emily A. A.
Hayes, Robin L.
Carter, Emily A.
description Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we consider a simple, atomic‐level model of the effect of oxidation on crack formation by examining how cracks form in aluminum and its fully oxidized stable partner α‐Al2O3; the valence electron density plot of the latter is shown in the picture, in which a 1 Å crack has been introduced. We find that the sharp falloff in electron density at Al2O3 surfaces provides a nanoscale explanation for the brittleness of alumina. Structural relaxation diminishes the acceptability of simple interaction models in macroscale simulations and suggests such relaxation should be accounted for in the future.
doi_str_mv 10.1002/1439-7641(20010119)2:1<55::AID-CPHC55>3.0.CO;2-S
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1354790468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1354790468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3405-585d0e94981d4b7052bdc53d7cf016acee6a168300ec8a5d6e15c6297900f8fd3</originalsourceid><addsrcrecordid>eNqVkE1v1DAQhi0EomXhL6AcOJRDlrEdO8lSIa3STyjNSrsIicvI6ziqaT5KnKjtv8dL0uXCBcmSrZnH74weQhIKcwrAPtCIp2EsI3rEAChQmr5nC3osxGKxvDwJs9VFJsQnPod5ln9k4foZOdx_eT69I8bFAXnl3E8ASCCmL8kB4zKVPOGHJD8tS6N7F7RlkD_YQvW2bQJ_-hsTXKumdVpVJvhq9I1qrKv_gFmn9G1w1nb1iNsmWFZDbZuhfk1elKpy5s10z8i3s9NNdhFe5eeX2fIq1DwCEYpEFGDSKE1oEW1jEGxbaMGLWJdApdLGSEVlwgGMTpQopKFCS5bGKUCZlAWfkaMx965rfw3G9Vhbp01Vqca0g0PKReThyGfMyGpEddc615kS7zpbq-4RKeBOM-484c4ZPmlGX0QhEL1mHDUjR8As9521j3w7TR-2tSn2gU9ePfBuAtROYNmpRlv3dzCNWCqZx9Yjdm8r8_gfe_1zraniU8Mx1brePOxTVXeLMuaxwO_X5_g53ohN-mOFX_hvwg2wNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354790468</pqid></control><display><type>article</type><title>Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum</title><source>Access via Wiley Online Library</source><creator>Jarvis, Emily A. A. ; Hayes, Robin L. ; Carter, Emily A.</creator><creatorcontrib>Jarvis, Emily A. A. ; Hayes, Robin L. ; Carter, Emily A.</creatorcontrib><description>Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we consider a simple, atomic‐level model of the effect of oxidation on crack formation by examining how cracks form in aluminum and its fully oxidized stable partner α‐Al2O3; the valence electron density plot of the latter is shown in the picture, in which a 1 Å crack has been introduced. We find that the sharp falloff in electron density at Al2O3 surfaces provides a nanoscale explanation for the brittleness of alumina. Structural relaxation diminishes the acceptability of simple interaction models in macroscale simulations and suggests such relaxation should be accounted for in the future.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/1439-7641(20010119)2:1&lt;55::AID-CPHC55&gt;3.0.CO;2-S</identifier><identifier>PMID: 23696383</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag GmbH</publisher><subject>aluminum ; Applied sciences ; cracking ; density functional calculations ; Exact sciences and technology ; Fractures ; materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; surfaces</subject><ispartof>Chemphyschem, 2001-01, Vol.2 (1), p.55-59</ispartof><rights>2001 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3405-585d0e94981d4b7052bdc53d7cf016acee6a168300ec8a5d6e15c6297900f8fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1439-7641%2820010119%292%3A1%3C55%3A%3AAID-CPHC55%3E3.0.CO%3B2-S$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1439-7641%2820010119%292%3A1%3C55%3A%3AAID-CPHC55%3E3.0.CO%3B2-S$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1142962$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23696383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarvis, Emily A. A.</creatorcontrib><creatorcontrib>Hayes, Robin L.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><title>Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we consider a simple, atomic‐level model of the effect of oxidation on crack formation by examining how cracks form in aluminum and its fully oxidized stable partner α‐Al2O3; the valence electron density plot of the latter is shown in the picture, in which a 1 Å crack has been introduced. We find that the sharp falloff in electron density at Al2O3 surfaces provides a nanoscale explanation for the brittleness of alumina. Structural relaxation diminishes the acceptability of simple interaction models in macroscale simulations and suggests such relaxation should be accounted for in the future.</description><subject>aluminum</subject><subject>Applied sciences</subject><subject>cracking</subject><subject>density functional calculations</subject><subject>Exact sciences and technology</subject><subject>Fractures</subject><subject>materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>surfaces</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqVkE1v1DAQhi0EomXhL6AcOJRDlrEdO8lSIa3STyjNSrsIicvI6ziqaT5KnKjtv8dL0uXCBcmSrZnH74weQhIKcwrAPtCIp2EsI3rEAChQmr5nC3osxGKxvDwJs9VFJsQnPod5ln9k4foZOdx_eT69I8bFAXnl3E8ASCCmL8kB4zKVPOGHJD8tS6N7F7RlkD_YQvW2bQJ_-hsTXKumdVpVJvhq9I1qrKv_gFmn9G1w1nb1iNsmWFZDbZuhfk1elKpy5s10z8i3s9NNdhFe5eeX2fIq1DwCEYpEFGDSKE1oEW1jEGxbaMGLWJdApdLGSEVlwgGMTpQopKFCS5bGKUCZlAWfkaMx965rfw3G9Vhbp01Vqca0g0PKReThyGfMyGpEddc615kS7zpbq-4RKeBOM-484c4ZPmlGX0QhEL1mHDUjR8As9521j3w7TR-2tSn2gU9ePfBuAtROYNmpRlv3dzCNWCqZx9Yjdm8r8_gfe_1zraniU8Mx1brePOxTVXeLMuaxwO_X5_g53ohN-mOFX_hvwg2wNA</recordid><startdate>20010119</startdate><enddate>20010119</enddate><creator>Jarvis, Emily A. A.</creator><creator>Hayes, Robin L.</creator><creator>Carter, Emily A.</creator><general>WILEY-VCH Verlag GmbH</general><general>WILEY‐VCH Verlag GmbH</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010119</creationdate><title>Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum</title><author>Jarvis, Emily A. A. ; Hayes, Robin L. ; Carter, Emily A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3405-585d0e94981d4b7052bdc53d7cf016acee6a168300ec8a5d6e15c6297900f8fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>aluminum</topic><topic>Applied sciences</topic><topic>cracking</topic><topic>density functional calculations</topic><topic>Exact sciences and technology</topic><topic>Fractures</topic><topic>materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarvis, Emily A. A.</creatorcontrib><creatorcontrib>Hayes, Robin L.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarvis, Emily A. A.</au><au>Hayes, Robin L.</au><au>Carter, Emily A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2001-01-19</date><risdate>2001</risdate><volume>2</volume><issue>1</issue><spage>55</spage><epage>59</epage><pages>55-59</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we consider a simple, atomic‐level model of the effect of oxidation on crack formation by examining how cracks form in aluminum and its fully oxidized stable partner α‐Al2O3; the valence electron density plot of the latter is shown in the picture, in which a 1 Å crack has been introduced. We find that the sharp falloff in electron density at Al2O3 surfaces provides a nanoscale explanation for the brittleness of alumina. Structural relaxation diminishes the acceptability of simple interaction models in macroscale simulations and suggests such relaxation should be accounted for in the future.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag GmbH</pub><pmid>23696383</pmid><doi>10.1002/1439-7641(20010119)2:1&lt;55::AID-CPHC55&gt;3.0.CO;2-S</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2001-01, Vol.2 (1), p.55-59
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_1354790468
source Access via Wiley Online Library
subjects aluminum
Applied sciences
cracking
density functional calculations
Exact sciences and technology
Fractures
materials science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
surfaces
title Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Oxidation%20on%20the%20Nanoscale%20Mechanisms%20of%20Crack%20Formation%20in%20Aluminum&rft.jtitle=Chemphyschem&rft.au=Jarvis,%20Emily%20A.%20A.&rft.date=2001-01-19&rft.volume=2&rft.issue=1&rft.spage=55&rft.epage=59&rft.pages=55-59&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/1439-7641(20010119)2:1%3C55::AID-CPHC55%3E3.0.CO;2-S&rft_dat=%3Cproquest_cross%3E1354790468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354790468&rft_id=info:pmid/23696383&rfr_iscdi=true