Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum
Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we c...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2001-01, Vol.2 (1), p.55-59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Chemphyschem |
container_volume | 2 |
creator | Jarvis, Emily A. A. Hayes, Robin L. Carter, Emily A. |
description | Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we consider a simple, atomic‐level model of the effect of oxidation on crack formation by examining how cracks form in aluminum and its fully oxidized stable partner α‐Al2O3; the valence electron density plot of the latter is shown in the picture, in which a 1 Å crack has been introduced. We find that the sharp falloff in electron density at Al2O3 surfaces provides a nanoscale explanation for the brittleness of alumina. Structural relaxation diminishes the acceptability of simple interaction models in macroscale simulations and suggests such relaxation should be accounted for in the future. |
doi_str_mv | 10.1002/1439-7641(20010119)2:1<55::AID-CPHC55>3.0.CO;2-S |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1354790468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1354790468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3405-585d0e94981d4b7052bdc53d7cf016acee6a168300ec8a5d6e15c6297900f8fd3</originalsourceid><addsrcrecordid>eNqVkE1v1DAQhi0EomXhL6AcOJRDlrEdO8lSIa3STyjNSrsIicvI6ziqaT5KnKjtv8dL0uXCBcmSrZnH74weQhIKcwrAPtCIp2EsI3rEAChQmr5nC3osxGKxvDwJs9VFJsQnPod5ln9k4foZOdx_eT69I8bFAXnl3E8ASCCmL8kB4zKVPOGHJD8tS6N7F7RlkD_YQvW2bQJ_-hsTXKumdVpVJvhq9I1qrKv_gFmn9G1w1nb1iNsmWFZDbZuhfk1elKpy5s10z8i3s9NNdhFe5eeX2fIq1DwCEYpEFGDSKE1oEW1jEGxbaMGLWJdApdLGSEVlwgGMTpQopKFCS5bGKUCZlAWfkaMx965rfw3G9Vhbp01Vqca0g0PKReThyGfMyGpEddc615kS7zpbq-4RKeBOM-484c4ZPmlGX0QhEL1mHDUjR8As9521j3w7TR-2tSn2gU9ePfBuAtROYNmpRlv3dzCNWCqZx9Yjdm8r8_gfe_1zraniU8Mx1brePOxTVXeLMuaxwO_X5_g53ohN-mOFX_hvwg2wNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354790468</pqid></control><display><type>article</type><title>Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum</title><source>Access via Wiley Online Library</source><creator>Jarvis, Emily A. A. ; Hayes, Robin L. ; Carter, Emily A.</creator><creatorcontrib>Jarvis, Emily A. A. ; Hayes, Robin L. ; Carter, Emily A.</creatorcontrib><description>Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we consider a simple, atomic‐level model of the effect of oxidation on crack formation by examining how cracks form in aluminum and its fully oxidized stable partner α‐Al2O3; the valence electron density plot of the latter is shown in the picture, in which a 1 Å crack has been introduced. We find that the sharp falloff in electron density at Al2O3 surfaces provides a nanoscale explanation for the brittleness of alumina. Structural relaxation diminishes the acceptability of simple interaction models in macroscale simulations and suggests such relaxation should be accounted for in the future.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/1439-7641(20010119)2:1<55::AID-CPHC55>3.0.CO;2-S</identifier><identifier>PMID: 23696383</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag GmbH</publisher><subject>aluminum ; Applied sciences ; cracking ; density functional calculations ; Exact sciences and technology ; Fractures ; materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; surfaces</subject><ispartof>Chemphyschem, 2001-01, Vol.2 (1), p.55-59</ispartof><rights>2001 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3405-585d0e94981d4b7052bdc53d7cf016acee6a168300ec8a5d6e15c6297900f8fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1439-7641%2820010119%292%3A1%3C55%3A%3AAID-CPHC55%3E3.0.CO%3B2-S$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1439-7641%2820010119%292%3A1%3C55%3A%3AAID-CPHC55%3E3.0.CO%3B2-S$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1142962$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23696383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarvis, Emily A. A.</creatorcontrib><creatorcontrib>Hayes, Robin L.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><title>Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we consider a simple, atomic‐level model of the effect of oxidation on crack formation by examining how cracks form in aluminum and its fully oxidized stable partner α‐Al2O3; the valence electron density plot of the latter is shown in the picture, in which a 1 Å crack has been introduced. We find that the sharp falloff in electron density at Al2O3 surfaces provides a nanoscale explanation for the brittleness of alumina. Structural relaxation diminishes the acceptability of simple interaction models in macroscale simulations and suggests such relaxation should be accounted for in the future.</description><subject>aluminum</subject><subject>Applied sciences</subject><subject>cracking</subject><subject>density functional calculations</subject><subject>Exact sciences and technology</subject><subject>Fractures</subject><subject>materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>surfaces</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqVkE1v1DAQhi0EomXhL6AcOJRDlrEdO8lSIa3STyjNSrsIicvI6ziqaT5KnKjtv8dL0uXCBcmSrZnH74weQhIKcwrAPtCIp2EsI3rEAChQmr5nC3osxGKxvDwJs9VFJsQnPod5ln9k4foZOdx_eT69I8bFAXnl3E8ASCCmL8kB4zKVPOGHJD8tS6N7F7RlkD_YQvW2bQJ_-hsTXKumdVpVJvhq9I1qrKv_gFmn9G1w1nb1iNsmWFZDbZuhfk1elKpy5s10z8i3s9NNdhFe5eeX2fIq1DwCEYpEFGDSKE1oEW1jEGxbaMGLWJdApdLGSEVlwgGMTpQopKFCS5bGKUCZlAWfkaMx965rfw3G9Vhbp01Vqca0g0PKReThyGfMyGpEddc615kS7zpbq-4RKeBOM-484c4ZPmlGX0QhEL1mHDUjR8As9521j3w7TR-2tSn2gU9ePfBuAtROYNmpRlv3dzCNWCqZx9Yjdm8r8_gfe_1zraniU8Mx1brePOxTVXeLMuaxwO_X5_g53ohN-mOFX_hvwg2wNA</recordid><startdate>20010119</startdate><enddate>20010119</enddate><creator>Jarvis, Emily A. A.</creator><creator>Hayes, Robin L.</creator><creator>Carter, Emily A.</creator><general>WILEY-VCH Verlag GmbH</general><general>WILEY‐VCH Verlag GmbH</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010119</creationdate><title>Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum</title><author>Jarvis, Emily A. A. ; Hayes, Robin L. ; Carter, Emily A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3405-585d0e94981d4b7052bdc53d7cf016acee6a168300ec8a5d6e15c6297900f8fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>aluminum</topic><topic>Applied sciences</topic><topic>cracking</topic><topic>density functional calculations</topic><topic>Exact sciences and technology</topic><topic>Fractures</topic><topic>materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarvis, Emily A. A.</creatorcontrib><creatorcontrib>Hayes, Robin L.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarvis, Emily A. A.</au><au>Hayes, Robin L.</au><au>Carter, Emily A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2001-01-19</date><risdate>2001</risdate><volume>2</volume><issue>1</issue><spage>55</spage><epage>59</epage><pages>55-59</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Aluminum is an important engineering material used in a variety of applications. Under ambient conditions, a self‐limiting oxide layer forms on the aluminum surface and protects the underlying metal from further oxidation; this oxidation of aluminum affects its mechanical strength. Accordingly, we consider a simple, atomic‐level model of the effect of oxidation on crack formation by examining how cracks form in aluminum and its fully oxidized stable partner α‐Al2O3; the valence electron density plot of the latter is shown in the picture, in which a 1 Å crack has been introduced. We find that the sharp falloff in electron density at Al2O3 surfaces provides a nanoscale explanation for the brittleness of alumina. Structural relaxation diminishes the acceptability of simple interaction models in macroscale simulations and suggests such relaxation should be accounted for in the future.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag GmbH</pub><pmid>23696383</pmid><doi>10.1002/1439-7641(20010119)2:1<55::AID-CPHC55>3.0.CO;2-S</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2001-01, Vol.2 (1), p.55-59 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_proquest_miscellaneous_1354790468 |
source | Access via Wiley Online Library |
subjects | aluminum Applied sciences cracking density functional calculations Exact sciences and technology Fractures materials science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy surfaces |
title | Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Oxidation%20on%20the%20Nanoscale%20Mechanisms%20of%20Crack%20Formation%20in%20Aluminum&rft.jtitle=Chemphyschem&rft.au=Jarvis,%20Emily%20A.%20A.&rft.date=2001-01-19&rft.volume=2&rft.issue=1&rft.spage=55&rft.epage=59&rft.pages=55-59&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/1439-7641(20010119)2:1%3C55::AID-CPHC55%3E3.0.CO;2-S&rft_dat=%3Cproquest_cross%3E1354790468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354790468&rft_id=info:pmid/23696383&rfr_iscdi=true |