6:2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants

► 5:2 sFTOH is the dominant volatile product of 6:2 FTOH aerobic biotransformation. ► 5:3 Acid and PFHxA are the major non-volatile transformation products. ► 6:2 FTOH aerobic biotransformation is not a source of PFBA and PFHpA. 6:2 Fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] is a major basic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2013-07, Vol.92 (4), p.464-470
Hauptverfasser: Zhao, Lijie, McCausland, Patricia K., Folsom, Patrick W., Wolstenholme, Barry W., Sun, Hongwen, Wang, Ning, Buck, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue 4
container_start_page 464
container_title Chemosphere (Oxford)
container_volume 92
creator Zhao, Lijie
McCausland, Patricia K.
Folsom, Patrick W.
Wolstenholme, Barry W.
Sun, Hongwen
Wang, Ning
Buck, Robert C.
description ► 5:2 sFTOH is the dominant volatile product of 6:2 FTOH aerobic biotransformation. ► 5:3 Acid and PFHxA are the major non-volatile transformation products. ► 6:2 FTOH aerobic biotransformation is not a source of PFBA and PFHpA. 6:2 Fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] is a major basic chemical being used to manufacture FTOH-based products. After the end of use, 6:2 FTOH-based products may be released to domestic wastewater treatment plants (WWTPs) as a first major environmental entry point. Activated sludge collected from two WWTPs was dosed with 6:2 FTOH to investigate its biotransformation rate and to identify major transformation products. The volatile 5:2 sFTOH [F(CF2)5CH(OH)CH3] is the most abundant transformation product and accounted for an average of 40mol% of initially dosed 6:2 FTOH after two months of incubation with activated sludge, with 30mol% detected in the headspace. PFPeA [F(CF2)4COOH] averaged 4.4mol% after two months, 2.4–7 times lower than that in sediment and soils. The much lower level of PFPeA formed in activated sludge compared with soil indicates that microbial populations in activated sludge may lack enzymes or suitable environment conditions to promote rapid 5:2 sFTOH decarboxylation to form PFPeA, resulting in more 5:2 sFTOH partitioned to the headspace. PFHxA [F(CF2)5COOH] and 5:3 [F(CF2)5CH2CH2COOH] acid are major non-volatile transformation products in activated sludge. For example, PFHxA averaged 11mol% after two months, which is about 30% higher compared with sediment and soils, suggesting that microbes in WWTPs may utilize similar pathways as that in sediment and soils to convert 5:2 sFTOH to PFHxA. 5:3 Acid averaged 14mol% after two months, comparable to that in soils and slightly lower than in sediment, further confirming that 5:3 acid is a unique product of 6:2 FTOH biotransformation in the environment.
doi_str_mv 10.1016/j.chemosphere.2013.02.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1353477871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653513003226</els_id><sourcerecordid>1353477871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-442636be2a9612de7b2663edd0da12bd40c6cfa402e6fb592cbb7bdf1d012823</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhi0EYkvhL4A5IHFJGNuJk3BDFQtIK3FgOVv-mGxdJXGxna3493jV8nHkNJfnnXn1DCGvGdQMmHx3qO0e55COe4xYc2CiBl6D4I_IhvXdUDE-9I_JBqBpK9mK9oo8S-kAUMLt8JRccdE20DPYkFW-5_R6WkMMGacwY6R6smEfJqoxBuMtNT7kqJc0hjjr7MNC_UK1zf5eZ3Q0Tau7QzrGMNN8CtSVJSmX3EmnjKfCRJoj6jzjkulx0ktOz8mTUU8JX1zmltxef7zdfa5uvn76svtwU9lm6HLVNFwKaZDrQTLusDNcSoHOgdOMG9eAlXbUDXCUo2kHbo3pjBuZA8Z7Lrbk7XntMYYfa2mlZp8sTqUDhjUpJlrRdF3fsYIOZ9TGkFLEUR2jn3X8qRioB-nqoP6Rrh6kK-CqSC_Zl5czq5nR_Un-tlyANxdAJ6unsdi0Pv3luobBULpsyaszN-qg9F0szPdv5VJbPicFtEMhdmcCi7V7j1El63Gx6HxEm5UL_j8K_wJrZ7JG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353477871</pqid></control><display><type>article</type><title>6:2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Lijie ; McCausland, Patricia K. ; Folsom, Patrick W. ; Wolstenholme, Barry W. ; Sun, Hongwen ; Wang, Ning ; Buck, Robert C.</creator><creatorcontrib>Zhao, Lijie ; McCausland, Patricia K. ; Folsom, Patrick W. ; Wolstenholme, Barry W. ; Sun, Hongwen ; Wang, Ning ; Buck, Robert C.</creatorcontrib><description>► 5:2 sFTOH is the dominant volatile product of 6:2 FTOH aerobic biotransformation. ► 5:3 Acid and PFHxA are the major non-volatile transformation products. ► 6:2 FTOH aerobic biotransformation is not a source of PFBA and PFHpA. 6:2 Fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] is a major basic chemical being used to manufacture FTOH-based products. After the end of use, 6:2 FTOH-based products may be released to domestic wastewater treatment plants (WWTPs) as a first major environmental entry point. Activated sludge collected from two WWTPs was dosed with 6:2 FTOH to investigate its biotransformation rate and to identify major transformation products. The volatile 5:2 sFTOH [F(CF2)5CH(OH)CH3] is the most abundant transformation product and accounted for an average of 40mol% of initially dosed 6:2 FTOH after two months of incubation with activated sludge, with 30mol% detected in the headspace. PFPeA [F(CF2)4COOH] averaged 4.4mol% after two months, 2.4–7 times lower than that in sediment and soils. The much lower level of PFPeA formed in activated sludge compared with soil indicates that microbial populations in activated sludge may lack enzymes or suitable environment conditions to promote rapid 5:2 sFTOH decarboxylation to form PFPeA, resulting in more 5:2 sFTOH partitioned to the headspace. PFHxA [F(CF2)5COOH] and 5:3 [F(CF2)5CH2CH2COOH] acid are major non-volatile transformation products in activated sludge. For example, PFHxA averaged 11mol% after two months, which is about 30% higher compared with sediment and soils, suggesting that microbes in WWTPs may utilize similar pathways as that in sediment and soils to convert 5:2 sFTOH to PFHxA. 5:3 Acid averaged 14mol% after two months, comparable to that in soils and slightly lower than in sediment, further confirming that 5:3 acid is a unique product of 6:2 FTOH biotransformation in the environment.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2013.02.032</identifier><identifier>PMID: 23540810</identifier><identifier>CODEN: CMSHAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>5:2 Secondary polyfluorinated alcohol (5:2 sFTOH) ; 5:3 Polyfluorinated acid (5:3 acid) ; 6:2 Fluorotelomer alcohol (6:2 FTOH) ; Activated sludge ; Aerobic biotransformation ; Aerobiosis ; alcohols ; Applied sciences ; Biodegradation, Environmental ; Biotransformation ; Caproates - analysis ; Caproates - metabolism ; Chromatography, High Pressure Liquid ; decarboxylation ; enzymes ; Exact sciences and technology ; Fluorocarbons - analysis ; Fluorocarbons - metabolism ; headspace analysis ; Hydrocarbons, Fluorinated - analysis ; Hydrocarbons, Fluorinated - metabolism ; manufacturing ; microorganisms ; Other wastewaters ; Perfluorohexanoic acid (PFHxA) ; Pollution ; sediments ; Sewage - microbiology ; soil ; Tandem Mass Spectrometry ; Waste Disposal Facilities ; wastewater treatment ; Wastewaters ; Water treatment and pollution</subject><ispartof>Chemosphere (Oxford), 2013-07, Vol.92 (4), p.464-470</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-442636be2a9612de7b2663edd0da12bd40c6cfa402e6fb592cbb7bdf1d012823</citedby><cites>FETCH-LOGICAL-c497t-442636be2a9612de7b2663edd0da12bd40c6cfa402e6fb592cbb7bdf1d012823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653513003226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27410935$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23540810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Lijie</creatorcontrib><creatorcontrib>McCausland, Patricia K.</creatorcontrib><creatorcontrib>Folsom, Patrick W.</creatorcontrib><creatorcontrib>Wolstenholme, Barry W.</creatorcontrib><creatorcontrib>Sun, Hongwen</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Buck, Robert C.</creatorcontrib><title>6:2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>► 5:2 sFTOH is the dominant volatile product of 6:2 FTOH aerobic biotransformation. ► 5:3 Acid and PFHxA are the major non-volatile transformation products. ► 6:2 FTOH aerobic biotransformation is not a source of PFBA and PFHpA. 6:2 Fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] is a major basic chemical being used to manufacture FTOH-based products. After the end of use, 6:2 FTOH-based products may be released to domestic wastewater treatment plants (WWTPs) as a first major environmental entry point. Activated sludge collected from two WWTPs was dosed with 6:2 FTOH to investigate its biotransformation rate and to identify major transformation products. The volatile 5:2 sFTOH [F(CF2)5CH(OH)CH3] is the most abundant transformation product and accounted for an average of 40mol% of initially dosed 6:2 FTOH after two months of incubation with activated sludge, with 30mol% detected in the headspace. PFPeA [F(CF2)4COOH] averaged 4.4mol% after two months, 2.4–7 times lower than that in sediment and soils. The much lower level of PFPeA formed in activated sludge compared with soil indicates that microbial populations in activated sludge may lack enzymes or suitable environment conditions to promote rapid 5:2 sFTOH decarboxylation to form PFPeA, resulting in more 5:2 sFTOH partitioned to the headspace. PFHxA [F(CF2)5COOH] and 5:3 [F(CF2)5CH2CH2COOH] acid are major non-volatile transformation products in activated sludge. For example, PFHxA averaged 11mol% after two months, which is about 30% higher compared with sediment and soils, suggesting that microbes in WWTPs may utilize similar pathways as that in sediment and soils to convert 5:2 sFTOH to PFHxA. 5:3 Acid averaged 14mol% after two months, comparable to that in soils and slightly lower than in sediment, further confirming that 5:3 acid is a unique product of 6:2 FTOH biotransformation in the environment.</description><subject>5:2 Secondary polyfluorinated alcohol (5:2 sFTOH)</subject><subject>5:3 Polyfluorinated acid (5:3 acid)</subject><subject>6:2 Fluorotelomer alcohol (6:2 FTOH)</subject><subject>Activated sludge</subject><subject>Aerobic biotransformation</subject><subject>Aerobiosis</subject><subject>alcohols</subject><subject>Applied sciences</subject><subject>Biodegradation, Environmental</subject><subject>Biotransformation</subject><subject>Caproates - analysis</subject><subject>Caproates - metabolism</subject><subject>Chromatography, High Pressure Liquid</subject><subject>decarboxylation</subject><subject>enzymes</subject><subject>Exact sciences and technology</subject><subject>Fluorocarbons - analysis</subject><subject>Fluorocarbons - metabolism</subject><subject>headspace analysis</subject><subject>Hydrocarbons, Fluorinated - analysis</subject><subject>Hydrocarbons, Fluorinated - metabolism</subject><subject>manufacturing</subject><subject>microorganisms</subject><subject>Other wastewaters</subject><subject>Perfluorohexanoic acid (PFHxA)</subject><subject>Pollution</subject><subject>sediments</subject><subject>Sewage - microbiology</subject><subject>soil</subject><subject>Tandem Mass Spectrometry</subject><subject>Waste Disposal Facilities</subject><subject>wastewater treatment</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2P0zAQhi0EYkvhL4A5IHFJGNuJk3BDFQtIK3FgOVv-mGxdJXGxna3493jV8nHkNJfnnXn1DCGvGdQMmHx3qO0e55COe4xYc2CiBl6D4I_IhvXdUDE-9I_JBqBpK9mK9oo8S-kAUMLt8JRccdE20DPYkFW-5_R6WkMMGacwY6R6smEfJqoxBuMtNT7kqJc0hjjr7MNC_UK1zf5eZ3Q0Tau7QzrGMNN8CtSVJSmX3EmnjKfCRJoj6jzjkulx0ktOz8mTUU8JX1zmltxef7zdfa5uvn76svtwU9lm6HLVNFwKaZDrQTLusDNcSoHOgdOMG9eAlXbUDXCUo2kHbo3pjBuZA8Z7Lrbk7XntMYYfa2mlZp8sTqUDhjUpJlrRdF3fsYIOZ9TGkFLEUR2jn3X8qRioB-nqoP6Rrh6kK-CqSC_Zl5czq5nR_Un-tlyANxdAJ6unsdi0Pv3luobBULpsyaszN-qg9F0szPdv5VJbPicFtEMhdmcCi7V7j1El63Gx6HxEm5UL_j8K_wJrZ7JG</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Zhao, Lijie</creator><creator>McCausland, Patricia K.</creator><creator>Folsom, Patrick W.</creator><creator>Wolstenholme, Barry W.</creator><creator>Sun, Hongwen</creator><creator>Wang, Ning</creator><creator>Buck, Robert C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130701</creationdate><title>6:2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants</title><author>Zhao, Lijie ; McCausland, Patricia K. ; Folsom, Patrick W. ; Wolstenholme, Barry W. ; Sun, Hongwen ; Wang, Ning ; Buck, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-442636be2a9612de7b2663edd0da12bd40c6cfa402e6fb592cbb7bdf1d012823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>5:2 Secondary polyfluorinated alcohol (5:2 sFTOH)</topic><topic>5:3 Polyfluorinated acid (5:3 acid)</topic><topic>6:2 Fluorotelomer alcohol (6:2 FTOH)</topic><topic>Activated sludge</topic><topic>Aerobic biotransformation</topic><topic>Aerobiosis</topic><topic>alcohols</topic><topic>Applied sciences</topic><topic>Biodegradation, Environmental</topic><topic>Biotransformation</topic><topic>Caproates - analysis</topic><topic>Caproates - metabolism</topic><topic>Chromatography, High Pressure Liquid</topic><topic>decarboxylation</topic><topic>enzymes</topic><topic>Exact sciences and technology</topic><topic>Fluorocarbons - analysis</topic><topic>Fluorocarbons - metabolism</topic><topic>headspace analysis</topic><topic>Hydrocarbons, Fluorinated - analysis</topic><topic>Hydrocarbons, Fluorinated - metabolism</topic><topic>manufacturing</topic><topic>microorganisms</topic><topic>Other wastewaters</topic><topic>Perfluorohexanoic acid (PFHxA)</topic><topic>Pollution</topic><topic>sediments</topic><topic>Sewage - microbiology</topic><topic>soil</topic><topic>Tandem Mass Spectrometry</topic><topic>Waste Disposal Facilities</topic><topic>wastewater treatment</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lijie</creatorcontrib><creatorcontrib>McCausland, Patricia K.</creatorcontrib><creatorcontrib>Folsom, Patrick W.</creatorcontrib><creatorcontrib>Wolstenholme, Barry W.</creatorcontrib><creatorcontrib>Sun, Hongwen</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Buck, Robert C.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lijie</au><au>McCausland, Patricia K.</au><au>Folsom, Patrick W.</au><au>Wolstenholme, Barry W.</au><au>Sun, Hongwen</au><au>Wang, Ning</au><au>Buck, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>6:2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>92</volume><issue>4</issue><spage>464</spage><epage>470</epage><pages>464-470</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><coden>CMSHAF</coden><abstract>► 5:2 sFTOH is the dominant volatile product of 6:2 FTOH aerobic biotransformation. ► 5:3 Acid and PFHxA are the major non-volatile transformation products. ► 6:2 FTOH aerobic biotransformation is not a source of PFBA and PFHpA. 6:2 Fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] is a major basic chemical being used to manufacture FTOH-based products. After the end of use, 6:2 FTOH-based products may be released to domestic wastewater treatment plants (WWTPs) as a first major environmental entry point. Activated sludge collected from two WWTPs was dosed with 6:2 FTOH to investigate its biotransformation rate and to identify major transformation products. The volatile 5:2 sFTOH [F(CF2)5CH(OH)CH3] is the most abundant transformation product and accounted for an average of 40mol% of initially dosed 6:2 FTOH after two months of incubation with activated sludge, with 30mol% detected in the headspace. PFPeA [F(CF2)4COOH] averaged 4.4mol% after two months, 2.4–7 times lower than that in sediment and soils. The much lower level of PFPeA formed in activated sludge compared with soil indicates that microbial populations in activated sludge may lack enzymes or suitable environment conditions to promote rapid 5:2 sFTOH decarboxylation to form PFPeA, resulting in more 5:2 sFTOH partitioned to the headspace. PFHxA [F(CF2)5COOH] and 5:3 [F(CF2)5CH2CH2COOH] acid are major non-volatile transformation products in activated sludge. For example, PFHxA averaged 11mol% after two months, which is about 30% higher compared with sediment and soils, suggesting that microbes in WWTPs may utilize similar pathways as that in sediment and soils to convert 5:2 sFTOH to PFHxA. 5:3 Acid averaged 14mol% after two months, comparable to that in soils and slightly lower than in sediment, further confirming that 5:3 acid is a unique product of 6:2 FTOH biotransformation in the environment.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23540810</pmid><doi>10.1016/j.chemosphere.2013.02.032</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2013-07, Vol.92 (4), p.464-470
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_1353477871
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects 5:2 Secondary polyfluorinated alcohol (5:2 sFTOH)
5:3 Polyfluorinated acid (5:3 acid)
6:2 Fluorotelomer alcohol (6:2 FTOH)
Activated sludge
Aerobic biotransformation
Aerobiosis
alcohols
Applied sciences
Biodegradation, Environmental
Biotransformation
Caproates - analysis
Caproates - metabolism
Chromatography, High Pressure Liquid
decarboxylation
enzymes
Exact sciences and technology
Fluorocarbons - analysis
Fluorocarbons - metabolism
headspace analysis
Hydrocarbons, Fluorinated - analysis
Hydrocarbons, Fluorinated - metabolism
manufacturing
microorganisms
Other wastewaters
Perfluorohexanoic acid (PFHxA)
Pollution
sediments
Sewage - microbiology
soil
Tandem Mass Spectrometry
Waste Disposal Facilities
wastewater treatment
Wastewaters
Water treatment and pollution
title 6:2 Fluorotelomer alcohol aerobic biotransformation in activated sludge from two domestic wastewater treatment plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=6:2%20Fluorotelomer%20alcohol%20aerobic%20biotransformation%20in%20activated%20sludge%20from%20two%20domestic%20wastewater%20treatment%20plants&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Zhao,%20Lijie&rft.date=2013-07-01&rft.volume=92&rft.issue=4&rft.spage=464&rft.epage=470&rft.pages=464-470&rft.issn=0045-6535&rft.eissn=1879-1298&rft.coden=CMSHAF&rft_id=info:doi/10.1016/j.chemosphere.2013.02.032&rft_dat=%3Cproquest_cross%3E1353477871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353477871&rft_id=info:pmid/23540810&rft_els_id=S0045653513003226&rfr_iscdi=true