Anatomy of an Extreme Event

The record-setting 2011 Texas drought/heat wave is examined to identify physical processes, underlying causes, and predictability. October 2010–September 2011 was Texas’s driest 12-month period on record. While the summer 2011 heat wave magnitude (2.9°C above the 1981–2010 mean) was larger than the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2013-05, Vol.26 (9), p.2811-2832
Hauptverfasser: Hoerling, Martin, Kumar, Arun, Dole, Randall, Nielsen-Gammon, John W., Eischeid, Jon, Perlwitz, Judith, Quan, Xiao-Wei, Zhang, Tao, Pegion, Philip, Chen, Mingyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2832
container_issue 9
container_start_page 2811
container_title Journal of climate
container_volume 26
creator Hoerling, Martin
Kumar, Arun
Dole, Randall
Nielsen-Gammon, John W.
Eischeid, Jon
Perlwitz, Judith
Quan, Xiao-Wei
Zhang, Tao
Pegion, Philip
Chen, Mingyue
description The record-setting 2011 Texas drought/heat wave is examined to identify physical processes, underlying causes, and predictability. October 2010–September 2011 was Texas’s driest 12-month period on record. While the summer 2011 heat wave magnitude (2.9°C above the 1981–2010 mean) was larger than the previous record, events of similar or larger magnitude appear in preindustrial control runs of climate models. The principal factor contributing to the heat wave magnitude was a severe rainfall deficit during antecedent and concurrent seasons related to anomalous sea surface temperatures (SSTs) that included a La Niña event. Virtually all the precipitation deficits appear to be due to natural variability. About 0.6°C warming relative to the 1981–2010 mean is estimated to be attributable to human-induced climate change, with warming observed mainly in the past decade. Quantitative attribution of the overall human-induced contribution since preindustrial times is complicated by the lack of a detected century-scale temperature trend over Texas. Multiple factors altered the probability of climate extremes over Texas in 2011. Observed SST conditions increased the frequency of severe rainfall deficit events from 9% to 34% relative to 1981–2010, while anthropogenic forcing did not appreciably alter their frequency. Human-induced climate change increased the probability of a new temperature record from 3% during the 1981–2010 reference period to 6% in 2011, while the 2011 SSTs increased the probability from 4% to 23%. Forecasts initialized in May 2011 demonstrate predictive skill in anticipating much of the SST-enhanced risk for an extreme summer drought/heat wave over Texas.
doi_str_mv 10.1175/jcli-d-12-00270.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1352290618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26192314</jstor_id><sourcerecordid>26192314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-beb298a540fbd1499014865458cf99b4a24010706fdc5d869089ceba5b4452523</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFY_gIhQEMFLdGaym-weS61aKXjR87LZbCAhf-puKvbbm9qi4MHTwMzvvXk8xs4RbhFTcVfZuozyCCkCoHRYHrARCoIIOKdDNgKpeCRTIY7ZSQgVAFICMGIX09b0XbOZdMXEtJP5Z-9d4ybzD9f2p-yoMHVwZ_s5Zm8P89fZU7R8eVzMpsvICh73UeYyUtIIDkWWI1cKkMtEcCFtoVTGDXFASCEpcitymaghi3WZERnnggTFY3az81357n3tQq-bMlhX16Z13TpojAWRggTlgF79Qatu7dshnSaJsUoF8vg_avDiwFHK7VvcUdZ3IXhX6JUvG-M3GkFvS9XPs-VC32sk_V3qIB6z672zCdbUhTetLcOPkNKYuCIYuMsdV4W-87_3BBXFQ8Qv_6J8JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1354041882</pqid></control><display><type>article</type><title>Anatomy of an Extreme Event</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hoerling, Martin ; Kumar, Arun ; Dole, Randall ; Nielsen-Gammon, John W. ; Eischeid, Jon ; Perlwitz, Judith ; Quan, Xiao-Wei ; Zhang, Tao ; Pegion, Philip ; Chen, Mingyue</creator><creatorcontrib>Hoerling, Martin ; Kumar, Arun ; Dole, Randall ; Nielsen-Gammon, John W. ; Eischeid, Jon ; Perlwitz, Judith ; Quan, Xiao-Wei ; Zhang, Tao ; Pegion, Philip ; Chen, Mingyue</creatorcontrib><description>The record-setting 2011 Texas drought/heat wave is examined to identify physical processes, underlying causes, and predictability. October 2010–September 2011 was Texas’s driest 12-month period on record. While the summer 2011 heat wave magnitude (2.9°C above the 1981–2010 mean) was larger than the previous record, events of similar or larger magnitude appear in preindustrial control runs of climate models. The principal factor contributing to the heat wave magnitude was a severe rainfall deficit during antecedent and concurrent seasons related to anomalous sea surface temperatures (SSTs) that included a La Niña event. Virtually all the precipitation deficits appear to be due to natural variability. About 0.6°C warming relative to the 1981–2010 mean is estimated to be attributable to human-induced climate change, with warming observed mainly in the past decade. Quantitative attribution of the overall human-induced contribution since preindustrial times is complicated by the lack of a detected century-scale temperature trend over Texas. Multiple factors altered the probability of climate extremes over Texas in 2011. Observed SST conditions increased the frequency of severe rainfall deficit events from 9% to 34% relative to 1981–2010, while anthropogenic forcing did not appreciably alter their frequency. Human-induced climate change increased the probability of a new temperature record from 3% during the 1981–2010 reference period to 6% in 2011, while the 2011 SSTs increased the probability from 4% to 23%. Forecasts initialized in May 2011 demonstrate predictive skill in anticipating much of the SST-enhanced risk for an extreme summer drought/heat wave over Texas.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli-d-12-00270.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Anthropogenic factors ; Climate ; Climate change ; Climate models ; Climatic extremes ; Drought ; Droughts ; Earth, ocean, space ; El Nino phenomena ; Exact sciences and technology ; External geophysics ; Global climate models ; Global warming ; Heat ; Heat waves ; Human influences ; La Nina ; La Nina events ; Mathematical models ; Meteorology ; Modeling ; Natural variability ; Precipitation ; Probability theory ; Rain ; Rainfall ; Sea surface ; Sea surface temperature ; Simulation ; Simulations ; Storms, hurricanes, tornadoes, thunderstorms ; Summer ; Surface temperature ; Temperature</subject><ispartof>Journal of climate, 2013-05, Vol.26 (9), p.2811-2832</ispartof><rights>2013 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society May 1, 2013</rights><rights>Copyright American Meteorological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-beb298a540fbd1499014865458cf99b4a24010706fdc5d869089ceba5b4452523</citedby><cites>FETCH-LOGICAL-c543t-beb298a540fbd1499014865458cf99b4a24010706fdc5d869089ceba5b4452523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26192314$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26192314$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27324920$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoerling, Martin</creatorcontrib><creatorcontrib>Kumar, Arun</creatorcontrib><creatorcontrib>Dole, Randall</creatorcontrib><creatorcontrib>Nielsen-Gammon, John W.</creatorcontrib><creatorcontrib>Eischeid, Jon</creatorcontrib><creatorcontrib>Perlwitz, Judith</creatorcontrib><creatorcontrib>Quan, Xiao-Wei</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Pegion, Philip</creatorcontrib><creatorcontrib>Chen, Mingyue</creatorcontrib><title>Anatomy of an Extreme Event</title><title>Journal of climate</title><description>The record-setting 2011 Texas drought/heat wave is examined to identify physical processes, underlying causes, and predictability. October 2010–September 2011 was Texas’s driest 12-month period on record. While the summer 2011 heat wave magnitude (2.9°C above the 1981–2010 mean) was larger than the previous record, events of similar or larger magnitude appear in preindustrial control runs of climate models. The principal factor contributing to the heat wave magnitude was a severe rainfall deficit during antecedent and concurrent seasons related to anomalous sea surface temperatures (SSTs) that included a La Niña event. Virtually all the precipitation deficits appear to be due to natural variability. About 0.6°C warming relative to the 1981–2010 mean is estimated to be attributable to human-induced climate change, with warming observed mainly in the past decade. Quantitative attribution of the overall human-induced contribution since preindustrial times is complicated by the lack of a detected century-scale temperature trend over Texas. Multiple factors altered the probability of climate extremes over Texas in 2011. Observed SST conditions increased the frequency of severe rainfall deficit events from 9% to 34% relative to 1981–2010, while anthropogenic forcing did not appreciably alter their frequency. Human-induced climate change increased the probability of a new temperature record from 3% during the 1981–2010 reference period to 6% in 2011, while the 2011 SSTs increased the probability from 4% to 23%. Forecasts initialized in May 2011 demonstrate predictive skill in anticipating much of the SST-enhanced risk for an extreme summer drought/heat wave over Texas.</description><subject>Anthropogenic factors</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic extremes</subject><subject>Drought</subject><subject>Droughts</subject><subject>Earth, ocean, space</subject><subject>El Nino phenomena</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Heat</subject><subject>Heat waves</subject><subject>Human influences</subject><subject>La Nina</subject><subject>La Nina events</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Natural variability</subject><subject>Precipitation</subject><subject>Probability theory</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Storms, hurricanes, tornadoes, thunderstorms</subject><subject>Summer</subject><subject>Surface temperature</subject><subject>Temperature</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9Lw0AQxRdRsFY_gIhQEMFLdGaym-weS61aKXjR87LZbCAhf-puKvbbm9qi4MHTwMzvvXk8xs4RbhFTcVfZuozyCCkCoHRYHrARCoIIOKdDNgKpeCRTIY7ZSQgVAFICMGIX09b0XbOZdMXEtJP5Z-9d4ybzD9f2p-yoMHVwZ_s5Zm8P89fZU7R8eVzMpsvICh73UeYyUtIIDkWWI1cKkMtEcCFtoVTGDXFASCEpcitymaghi3WZERnnggTFY3az81357n3tQq-bMlhX16Z13TpojAWRggTlgF79Qatu7dshnSaJsUoF8vg_avDiwFHK7VvcUdZ3IXhX6JUvG-M3GkFvS9XPs-VC32sk_V3qIB6z672zCdbUhTetLcOPkNKYuCIYuMsdV4W-87_3BBXFQ8Qv_6J8JQ</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Hoerling, Martin</creator><creator>Kumar, Arun</creator><creator>Dole, Randall</creator><creator>Nielsen-Gammon, John W.</creator><creator>Eischeid, Jon</creator><creator>Perlwitz, Judith</creator><creator>Quan, Xiao-Wei</creator><creator>Zhang, Tao</creator><creator>Pegion, Philip</creator><creator>Chen, Mingyue</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Anatomy of an Extreme Event</title><author>Hoerling, Martin ; Kumar, Arun ; Dole, Randall ; Nielsen-Gammon, John W. ; Eischeid, Jon ; Perlwitz, Judith ; Quan, Xiao-Wei ; Zhang, Tao ; Pegion, Philip ; Chen, Mingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-beb298a540fbd1499014865458cf99b4a24010706fdc5d869089ceba5b4452523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anthropogenic factors</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic extremes</topic><topic>Drought</topic><topic>Droughts</topic><topic>Earth, ocean, space</topic><topic>El Nino phenomena</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Heat</topic><topic>Heat waves</topic><topic>Human influences</topic><topic>La Nina</topic><topic>La Nina events</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Natural variability</topic><topic>Precipitation</topic><topic>Probability theory</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Storms, hurricanes, tornadoes, thunderstorms</topic><topic>Summer</topic><topic>Surface temperature</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoerling, Martin</creatorcontrib><creatorcontrib>Kumar, Arun</creatorcontrib><creatorcontrib>Dole, Randall</creatorcontrib><creatorcontrib>Nielsen-Gammon, John W.</creatorcontrib><creatorcontrib>Eischeid, Jon</creatorcontrib><creatorcontrib>Perlwitz, Judith</creatorcontrib><creatorcontrib>Quan, Xiao-Wei</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Pegion, Philip</creatorcontrib><creatorcontrib>Chen, Mingyue</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoerling, Martin</au><au>Kumar, Arun</au><au>Dole, Randall</au><au>Nielsen-Gammon, John W.</au><au>Eischeid, Jon</au><au>Perlwitz, Judith</au><au>Quan, Xiao-Wei</au><au>Zhang, Tao</au><au>Pegion, Philip</au><au>Chen, Mingyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomy of an Extreme Event</atitle><jtitle>Journal of climate</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>26</volume><issue>9</issue><spage>2811</spage><epage>2832</epage><pages>2811-2832</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The record-setting 2011 Texas drought/heat wave is examined to identify physical processes, underlying causes, and predictability. October 2010–September 2011 was Texas’s driest 12-month period on record. While the summer 2011 heat wave magnitude (2.9°C above the 1981–2010 mean) was larger than the previous record, events of similar or larger magnitude appear in preindustrial control runs of climate models. The principal factor contributing to the heat wave magnitude was a severe rainfall deficit during antecedent and concurrent seasons related to anomalous sea surface temperatures (SSTs) that included a La Niña event. Virtually all the precipitation deficits appear to be due to natural variability. About 0.6°C warming relative to the 1981–2010 mean is estimated to be attributable to human-induced climate change, with warming observed mainly in the past decade. Quantitative attribution of the overall human-induced contribution since preindustrial times is complicated by the lack of a detected century-scale temperature trend over Texas. Multiple factors altered the probability of climate extremes over Texas in 2011. Observed SST conditions increased the frequency of severe rainfall deficit events from 9% to 34% relative to 1981–2010, while anthropogenic forcing did not appreciably alter their frequency. Human-induced climate change increased the probability of a new temperature record from 3% during the 1981–2010 reference period to 6% in 2011, while the 2011 SSTs increased the probability from 4% to 23%. Forecasts initialized in May 2011 demonstrate predictive skill in anticipating much of the SST-enhanced risk for an extreme summer drought/heat wave over Texas.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli-d-12-00270.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2013-05, Vol.26 (9), p.2811-2832
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1352290618
source Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Anthropogenic factors
Climate
Climate change
Climate models
Climatic extremes
Drought
Droughts
Earth, ocean, space
El Nino phenomena
Exact sciences and technology
External geophysics
Global climate models
Global warming
Heat
Heat waves
Human influences
La Nina
La Nina events
Mathematical models
Meteorology
Modeling
Natural variability
Precipitation
Probability theory
Rain
Rainfall
Sea surface
Sea surface temperature
Simulation
Simulations
Storms, hurricanes, tornadoes, thunderstorms
Summer
Surface temperature
Temperature
title Anatomy of an Extreme Event
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomy%20of%20an%20Extreme%20Event&rft.jtitle=Journal%20of%20climate&rft.au=Hoerling,%20Martin&rft.date=2013-05-01&rft.volume=26&rft.issue=9&rft.spage=2811&rft.epage=2832&rft.pages=2811-2832&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli-d-12-00270.1&rft_dat=%3Cjstor_proqu%3E26192314%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1354041882&rft_id=info:pmid/&rft_jstor_id=26192314&rfr_iscdi=true