Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon

Lecanicillium lecanii , Verticillium chlamydosporium , V. fungicola var flavidum and Beauveria bassiana were evaluated on their growth with pure n -hexane, toluene and n -hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2013-05, Vol.36 (5), p.531-539
Hauptverfasser: Rocha-Pino, Zaizy, Marín-Cervantes, María del Carmen, Martínez-Archundia, Marlet, Soriano-Blancas, Elizabeth, Revah, Sergio, Shirai, Keiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 5
container_start_page 531
container_title Bioprocess and biosystems engineering
container_volume 36
creator Rocha-Pino, Zaizy
Marín-Cervantes, María del Carmen
Martínez-Archundia, Marlet
Soriano-Blancas, Elizabeth
Revah, Sergio
Shirai, Keiko
description Lecanicillium lecanii , Verticillium chlamydosporium , V. fungicola var flavidum and Beauveria bassiana were evaluated on their growth with pure n -hexane, toluene and n -hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of Lecanicillium were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of n -hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of n -hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases, N -acetylhexosaminidase and production of hydrophobins class I and II.
doi_str_mv 10.1007/s00449-012-0808-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1352288753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955163371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-5e61d61dcf6b9efeaa5962536e456fe617e04c06d0d4082a09a1bc50e97f641d3</originalsourceid><addsrcrecordid>eNqNkc2KFDEUhYMozjj6AG4k4MbFlN6kk1RlKcM4Ci1udF2kUre6M6aSMqli6H4In9l094yIIAghueF-5-TnEPKSwVsGUL_LAELoChivoIGm2j8i50wxWdUK5OOHWmp2Rp7lfAvAZMPhKTnjXHNVN-qc_Pwc07SNPm6cNZ7arQkbzJelcLML0e9mZymG_W7ETE3o6XbXp1gUnQuVd9-RTinO6ELpZpowTzHkgsaBrtGa4Kzz3i0j9cedo_2SXNjQTYp385beuTIdLa1JXQzPyZPB-Iwv7tcL8u3D9derj9X6y82nq_frygrB50qiYn0ZdlCdxgGNkVpxuVIopBpKs0YQFlQPvYCGG9CGdVYC6npQgvWrC_Lm5Ftu_2PBPLejyxa9NwHjklu2kpw3TS1X_4EKJetGgi7o67_Q27ikUB5ypDhrNNSFYifKpphzwqGdkhtN2rUM2kOu7SnXtuTaHnJt90Xz6t556UbsfysegiwAPwF5Ovwvpj-O_qfrL-wDsSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346218907</pqid></control><display><type>article</type><title>Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rocha-Pino, Zaizy ; Marín-Cervantes, María del Carmen ; Martínez-Archundia, Marlet ; Soriano-Blancas, Elizabeth ; Revah, Sergio ; Shirai, Keiko</creator><creatorcontrib>Rocha-Pino, Zaizy ; Marín-Cervantes, María del Carmen ; Martínez-Archundia, Marlet ; Soriano-Blancas, Elizabeth ; Revah, Sergio ; Shirai, Keiko</creatorcontrib><description>Lecanicillium lecanii , Verticillium chlamydosporium , V. fungicola var flavidum and Beauveria bassiana were evaluated on their growth with pure n -hexane, toluene and n -hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of Lecanicillium were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of n -hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of n -hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases, N -acetylhexosaminidase and production of hydrophobins class I and II.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-012-0808-z</identifier><identifier>PMID: 22926786</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Amidohydrolases - biosynthesis ; Ascomycota - growth &amp; development ; Beauveria bassiana ; Biodegradation ; Bioengineering ; Biotechnology ; Carbon sources ; Chemistry ; Chemistry and Materials Science ; Chitin ; Chitinases - biosynthesis ; Environmental Engineering/Biotechnology ; Enzymes ; Food Science ; Fungal Proteins - biosynthesis ; Hexanes - metabolism ; Hydrocarbons ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Morphology ; Original Paper ; Proteins ; Toluene ; Toluene - metabolism ; Verticillium chlamydosporium</subject><ispartof>Bioprocess and biosystems engineering, 2013-05, Vol.36 (5), p.531-539</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-5e61d61dcf6b9efeaa5962536e456fe617e04c06d0d4082a09a1bc50e97f641d3</citedby><cites>FETCH-LOGICAL-c442t-5e61d61dcf6b9efeaa5962536e456fe617e04c06d0d4082a09a1bc50e97f641d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-012-0808-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-012-0808-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22926786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rocha-Pino, Zaizy</creatorcontrib><creatorcontrib>Marín-Cervantes, María del Carmen</creatorcontrib><creatorcontrib>Martínez-Archundia, Marlet</creatorcontrib><creatorcontrib>Soriano-Blancas, Elizabeth</creatorcontrib><creatorcontrib>Revah, Sergio</creatorcontrib><creatorcontrib>Shirai, Keiko</creatorcontrib><title>Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>Lecanicillium lecanii , Verticillium chlamydosporium , V. fungicola var flavidum and Beauveria bassiana were evaluated on their growth with pure n -hexane, toluene and n -hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of Lecanicillium were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of n -hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of n -hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases, N -acetylhexosaminidase and production of hydrophobins class I and II.</description><subject>Amidohydrolases - biosynthesis</subject><subject>Ascomycota - growth &amp; development</subject><subject>Beauveria bassiana</subject><subject>Biodegradation</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Carbon sources</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitin</subject><subject>Chitinases - biosynthesis</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Enzymes</subject><subject>Food Science</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Hexanes - metabolism</subject><subject>Hydrocarbons</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Morphology</subject><subject>Original Paper</subject><subject>Proteins</subject><subject>Toluene</subject><subject>Toluene - metabolism</subject><subject>Verticillium chlamydosporium</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2KFDEUhYMozjj6AG4k4MbFlN6kk1RlKcM4Ci1udF2kUre6M6aSMqli6H4In9l094yIIAghueF-5-TnEPKSwVsGUL_LAELoChivoIGm2j8i50wxWdUK5OOHWmp2Rp7lfAvAZMPhKTnjXHNVN-qc_Pwc07SNPm6cNZ7arQkbzJelcLML0e9mZymG_W7ETE3o6XbXp1gUnQuVd9-RTinO6ELpZpowTzHkgsaBrtGa4Kzz3i0j9cedo_2SXNjQTYp385beuTIdLa1JXQzPyZPB-Iwv7tcL8u3D9derj9X6y82nq_frygrB50qiYn0ZdlCdxgGNkVpxuVIopBpKs0YQFlQPvYCGG9CGdVYC6npQgvWrC_Lm5Ftu_2PBPLejyxa9NwHjklu2kpw3TS1X_4EKJetGgi7o67_Q27ikUB5ypDhrNNSFYifKpphzwqGdkhtN2rUM2kOu7SnXtuTaHnJt90Xz6t556UbsfysegiwAPwF5Ovwvpj-O_qfrL-wDsSY</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Rocha-Pino, Zaizy</creator><creator>Marín-Cervantes, María del Carmen</creator><creator>Martínez-Archundia, Marlet</creator><creator>Soriano-Blancas, Elizabeth</creator><creator>Revah, Sergio</creator><creator>Shirai, Keiko</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130501</creationdate><title>Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon</title><author>Rocha-Pino, Zaizy ; Marín-Cervantes, María del Carmen ; Martínez-Archundia, Marlet ; Soriano-Blancas, Elizabeth ; Revah, Sergio ; Shirai, Keiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-5e61d61dcf6b9efeaa5962536e456fe617e04c06d0d4082a09a1bc50e97f641d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amidohydrolases - biosynthesis</topic><topic>Ascomycota - growth &amp; development</topic><topic>Beauveria bassiana</topic><topic>Biodegradation</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Carbon sources</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitin</topic><topic>Chitinases - biosynthesis</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Enzymes</topic><topic>Food Science</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Hexanes - metabolism</topic><topic>Hydrocarbons</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Morphology</topic><topic>Original Paper</topic><topic>Proteins</topic><topic>Toluene</topic><topic>Toluene - metabolism</topic><topic>Verticillium chlamydosporium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha-Pino, Zaizy</creatorcontrib><creatorcontrib>Marín-Cervantes, María del Carmen</creatorcontrib><creatorcontrib>Martínez-Archundia, Marlet</creatorcontrib><creatorcontrib>Soriano-Blancas, Elizabeth</creatorcontrib><creatorcontrib>Revah, Sergio</creatorcontrib><creatorcontrib>Shirai, Keiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha-Pino, Zaizy</au><au>Marín-Cervantes, María del Carmen</au><au>Martínez-Archundia, Marlet</au><au>Soriano-Blancas, Elizabeth</au><au>Revah, Sergio</au><au>Shirai, Keiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>36</volume><issue>5</issue><spage>531</spage><epage>539</epage><pages>531-539</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>Lecanicillium lecanii , Verticillium chlamydosporium , V. fungicola var flavidum and Beauveria bassiana were evaluated on their growth with pure n -hexane, toluene and n -hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of Lecanicillium were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of n -hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of n -hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases, N -acetylhexosaminidase and production of hydrophobins class I and II.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22926786</pmid><doi>10.1007/s00449-012-0808-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2013-05, Vol.36 (5), p.531-539
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_miscellaneous_1352288753
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amidohydrolases - biosynthesis
Ascomycota - growth & development
Beauveria bassiana
Biodegradation
Bioengineering
Biotechnology
Carbon sources
Chemistry
Chemistry and Materials Science
Chitin
Chitinases - biosynthesis
Environmental Engineering/Biotechnology
Enzymes
Food Science
Fungal Proteins - biosynthesis
Hexanes - metabolism
Hydrocarbons
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Morphology
Original Paper
Proteins
Toluene
Toluene - metabolism
Verticillium chlamydosporium
title Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20changes,%20chitinolytic%20enzymes%20and%20hydrophobin-like%20proteins%20as%20responses%20of%20Lecanicillium%20lecanii%20during%20growth%20with%20hydrocarbon&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Rocha-Pino,%20Zaizy&rft.date=2013-05-01&rft.volume=36&rft.issue=5&rft.spage=531&rft.epage=539&rft.pages=531-539&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-012-0808-z&rft_dat=%3Cproquest_cross%3E2955163371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346218907&rft_id=info:pmid/22926786&rfr_iscdi=true