Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon
Lecanicillium lecanii , Verticillium chlamydosporium , V. fungicola var flavidum and Beauveria bassiana were evaluated on their growth with pure n -hexane, toluene and n -hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. A...
Gespeichert in:
Veröffentlicht in: | Bioprocess and biosystems engineering 2013-05, Vol.36 (5), p.531-539 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 5 |
container_start_page | 531 |
container_title | Bioprocess and biosystems engineering |
container_volume | 36 |
creator | Rocha-Pino, Zaizy Marín-Cervantes, María del Carmen Martínez-Archundia, Marlet Soriano-Blancas, Elizabeth Revah, Sergio Shirai, Keiko |
description | Lecanicillium lecanii
,
Verticillium
chlamydosporium
,
V.
fungicola
var
flavidum
and
Beauveria bassiana
were evaluated on their growth with pure
n
-hexane, toluene and
n
-hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of
Lecanicillium
were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of
n
-hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of
n
-hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases,
N
-acetylhexosaminidase and production of hydrophobins class I and II. |
doi_str_mv | 10.1007/s00449-012-0808-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1352288753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955163371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-5e61d61dcf6b9efeaa5962536e456fe617e04c06d0d4082a09a1bc50e97f641d3</originalsourceid><addsrcrecordid>eNqNkc2KFDEUhYMozjj6AG4k4MbFlN6kk1RlKcM4Ci1udF2kUre6M6aSMqli6H4In9l094yIIAghueF-5-TnEPKSwVsGUL_LAELoChivoIGm2j8i50wxWdUK5OOHWmp2Rp7lfAvAZMPhKTnjXHNVN-qc_Pwc07SNPm6cNZ7arQkbzJelcLML0e9mZymG_W7ETE3o6XbXp1gUnQuVd9-RTinO6ELpZpowTzHkgsaBrtGa4Kzz3i0j9cedo_2SXNjQTYp385beuTIdLa1JXQzPyZPB-Iwv7tcL8u3D9derj9X6y82nq_frygrB50qiYn0ZdlCdxgGNkVpxuVIopBpKs0YQFlQPvYCGG9CGdVYC6npQgvWrC_Lm5Ftu_2PBPLejyxa9NwHjklu2kpw3TS1X_4EKJetGgi7o67_Q27ikUB5ypDhrNNSFYifKpphzwqGdkhtN2rUM2kOu7SnXtuTaHnJt90Xz6t556UbsfysegiwAPwF5Ovwvpj-O_qfrL-wDsSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346218907</pqid></control><display><type>article</type><title>Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rocha-Pino, Zaizy ; Marín-Cervantes, María del Carmen ; Martínez-Archundia, Marlet ; Soriano-Blancas, Elizabeth ; Revah, Sergio ; Shirai, Keiko</creator><creatorcontrib>Rocha-Pino, Zaizy ; Marín-Cervantes, María del Carmen ; Martínez-Archundia, Marlet ; Soriano-Blancas, Elizabeth ; Revah, Sergio ; Shirai, Keiko</creatorcontrib><description>Lecanicillium lecanii
,
Verticillium
chlamydosporium
,
V.
fungicola
var
flavidum
and
Beauveria bassiana
were evaluated on their growth with pure
n
-hexane, toluene and
n
-hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of
Lecanicillium
were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of
n
-hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of
n
-hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases,
N
-acetylhexosaminidase and production of hydrophobins class I and II.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-012-0808-z</identifier><identifier>PMID: 22926786</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Amidohydrolases - biosynthesis ; Ascomycota - growth & development ; Beauveria bassiana ; Biodegradation ; Bioengineering ; Biotechnology ; Carbon sources ; Chemistry ; Chemistry and Materials Science ; Chitin ; Chitinases - biosynthesis ; Environmental Engineering/Biotechnology ; Enzymes ; Food Science ; Fungal Proteins - biosynthesis ; Hexanes - metabolism ; Hydrocarbons ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Morphology ; Original Paper ; Proteins ; Toluene ; Toluene - metabolism ; Verticillium chlamydosporium</subject><ispartof>Bioprocess and biosystems engineering, 2013-05, Vol.36 (5), p.531-539</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-5e61d61dcf6b9efeaa5962536e456fe617e04c06d0d4082a09a1bc50e97f641d3</citedby><cites>FETCH-LOGICAL-c442t-5e61d61dcf6b9efeaa5962536e456fe617e04c06d0d4082a09a1bc50e97f641d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-012-0808-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-012-0808-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22926786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rocha-Pino, Zaizy</creatorcontrib><creatorcontrib>Marín-Cervantes, María del Carmen</creatorcontrib><creatorcontrib>Martínez-Archundia, Marlet</creatorcontrib><creatorcontrib>Soriano-Blancas, Elizabeth</creatorcontrib><creatorcontrib>Revah, Sergio</creatorcontrib><creatorcontrib>Shirai, Keiko</creatorcontrib><title>Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>Lecanicillium lecanii
,
Verticillium
chlamydosporium
,
V.
fungicola
var
flavidum
and
Beauveria bassiana
were evaluated on their growth with pure
n
-hexane, toluene and
n
-hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of
Lecanicillium
were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of
n
-hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of
n
-hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases,
N
-acetylhexosaminidase and production of hydrophobins class I and II.</description><subject>Amidohydrolases - biosynthesis</subject><subject>Ascomycota - growth & development</subject><subject>Beauveria bassiana</subject><subject>Biodegradation</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Carbon sources</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitin</subject><subject>Chitinases - biosynthesis</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Enzymes</subject><subject>Food Science</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Hexanes - metabolism</subject><subject>Hydrocarbons</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Morphology</subject><subject>Original Paper</subject><subject>Proteins</subject><subject>Toluene</subject><subject>Toluene - metabolism</subject><subject>Verticillium chlamydosporium</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2KFDEUhYMozjj6AG4k4MbFlN6kk1RlKcM4Ci1udF2kUre6M6aSMqli6H4In9l094yIIAghueF-5-TnEPKSwVsGUL_LAELoChivoIGm2j8i50wxWdUK5OOHWmp2Rp7lfAvAZMPhKTnjXHNVN-qc_Pwc07SNPm6cNZ7arQkbzJelcLML0e9mZymG_W7ETE3o6XbXp1gUnQuVd9-RTinO6ELpZpowTzHkgsaBrtGa4Kzz3i0j9cedo_2SXNjQTYp385beuTIdLa1JXQzPyZPB-Iwv7tcL8u3D9derj9X6y82nq_frygrB50qiYn0ZdlCdxgGNkVpxuVIopBpKs0YQFlQPvYCGG9CGdVYC6npQgvWrC_Lm5Ftu_2PBPLejyxa9NwHjklu2kpw3TS1X_4EKJetGgi7o67_Q27ikUB5ypDhrNNSFYifKpphzwqGdkhtN2rUM2kOu7SnXtuTaHnJt90Xz6t556UbsfysegiwAPwF5Ovwvpj-O_qfrL-wDsSY</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Rocha-Pino, Zaizy</creator><creator>Marín-Cervantes, María del Carmen</creator><creator>Martínez-Archundia, Marlet</creator><creator>Soriano-Blancas, Elizabeth</creator><creator>Revah, Sergio</creator><creator>Shirai, Keiko</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130501</creationdate><title>Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon</title><author>Rocha-Pino, Zaizy ; Marín-Cervantes, María del Carmen ; Martínez-Archundia, Marlet ; Soriano-Blancas, Elizabeth ; Revah, Sergio ; Shirai, Keiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-5e61d61dcf6b9efeaa5962536e456fe617e04c06d0d4082a09a1bc50e97f641d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amidohydrolases - biosynthesis</topic><topic>Ascomycota - growth & development</topic><topic>Beauveria bassiana</topic><topic>Biodegradation</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Carbon sources</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitin</topic><topic>Chitinases - biosynthesis</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Enzymes</topic><topic>Food Science</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Hexanes - metabolism</topic><topic>Hydrocarbons</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Morphology</topic><topic>Original Paper</topic><topic>Proteins</topic><topic>Toluene</topic><topic>Toluene - metabolism</topic><topic>Verticillium chlamydosporium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha-Pino, Zaizy</creatorcontrib><creatorcontrib>Marín-Cervantes, María del Carmen</creatorcontrib><creatorcontrib>Martínez-Archundia, Marlet</creatorcontrib><creatorcontrib>Soriano-Blancas, Elizabeth</creatorcontrib><creatorcontrib>Revah, Sergio</creatorcontrib><creatorcontrib>Shirai, Keiko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha-Pino, Zaizy</au><au>Marín-Cervantes, María del Carmen</au><au>Martínez-Archundia, Marlet</au><au>Soriano-Blancas, Elizabeth</au><au>Revah, Sergio</au><au>Shirai, Keiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>36</volume><issue>5</issue><spage>531</spage><epage>539</epage><pages>531-539</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>Lecanicillium lecanii
,
Verticillium
chlamydosporium
,
V.
fungicola
var
flavidum
and
Beauveria bassiana
were evaluated on their growth with pure
n
-hexane, toluene and
n
-hexane:toluene 17:83 (v:v) mixture. Another set of treatments were conducted with colloidal chitin as additional carbon source. All the strains of
Lecanicillium
were able to grow using hydrocarbons with or without the addition of chitin, although the presence of hydrocarbons showed significant inhibition evidenced by measured biomass, radial growth and microscopic analyses. Degradation of
n
-hexane ranged within 43 and 62 % and it was higher than that with toluene. The strains L460, L157 and L2149, which presented the highest growth, were further selected for determinations of hydrocarbon consumptions in microcosms. Strain L157 showed the highest consumption of
n
-hexane (55.6 %) and toluene (52.9 %) as sole carbon source and it also displayed activities of endochitinases,
N
-acetylhexosaminidase and production of hydrophobins class I and II.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22926786</pmid><doi>10.1007/s00449-012-0808-z</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-7591 |
ispartof | Bioprocess and biosystems engineering, 2013-05, Vol.36 (5), p.531-539 |
issn | 1615-7591 1615-7605 |
language | eng |
recordid | cdi_proquest_miscellaneous_1352288753 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amidohydrolases - biosynthesis Ascomycota - growth & development Beauveria bassiana Biodegradation Bioengineering Biotechnology Carbon sources Chemistry Chemistry and Materials Science Chitin Chitinases - biosynthesis Environmental Engineering/Biotechnology Enzymes Food Science Fungal Proteins - biosynthesis Hexanes - metabolism Hydrocarbons Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Morphology Original Paper Proteins Toluene Toluene - metabolism Verticillium chlamydosporium |
title | Morphological changes, chitinolytic enzymes and hydrophobin-like proteins as responses of Lecanicillium lecanii during growth with hydrocarbon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphological%20changes,%20chitinolytic%20enzymes%20and%20hydrophobin-like%20proteins%20as%20responses%20of%20Lecanicillium%20lecanii%20during%20growth%20with%20hydrocarbon&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Rocha-Pino,%20Zaizy&rft.date=2013-05-01&rft.volume=36&rft.issue=5&rft.spage=531&rft.epage=539&rft.pages=531-539&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-012-0808-z&rft_dat=%3Cproquest_cross%3E2955163371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346218907&rft_id=info:pmid/22926786&rfr_iscdi=true |