Appraisal of soft computing techniques in prediction of total bed material load in tropical rivers

This paper evaluates the performance of three soft computing techniques, namely Gene-Expression Programming (GEP) (Zakaria et al 2010), Feed Forward Neural Networks (FFNN) (Ab Ghani et al 2011), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the prediction of total bed material load for three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Earth System Science 2012-02, Vol.121 (1), p.125-133
Hauptverfasser: CHANG, C K, AZAMATHULLA, H MD, ZAKARIA, N A, GHANI, A AB
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper evaluates the performance of three soft computing techniques, namely Gene-Expression Programming (GEP) (Zakaria et al 2010), Feed Forward Neural Networks (FFNN) (Ab Ghani et al 2011), and Adaptive Neuro-Fuzzy Inference System (ANFIS) in the prediction of total bed material load for three Malaysian rivers namely Kurau, Langat and Muda. The results of present study are very promising: FFNN ( R 2 = 0.958, RMSE = 0.0698), ANFIS ( R 2 = 0.648, RMSE = 6.654), and GEP ( R 2 = 0.97, RMSE = 0.057), which support the use of these intelligent techniques in the prediction of sediment loads in tropical rivers.
ISSN:0253-4126
2347-4327
0973-774X
DOI:10.1007/s12040-012-0138-1