Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition

Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2013-05, Vol.21 (9), p.10753-10763
Hauptverfasser: Ryckman, Judson D, Hallman, Kent A, Marvel, Robert E, Haglund, Richard F, Weiss, Sharon M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10763
container_issue 9
container_start_page 10753
container_title Optics express
container_volume 21
creator Ryckman, Judson D
Hallman, Kent A
Marvel, Robert E
Haglund, Richard F
Weiss, Sharon M
description Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO(2) onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO(2) absorption modulators (L < 1 μm) and ring-resonators (R ~ λ(0)). Optically inducing the SMT in a small, ~0.275 μm(2), active area of polycrystalline VO(2) enables Si-VO(2) structures to achieve record values of absorption modulation, ~4 dB μm(-1), and intracavity phase modulation, ~π/5 rad μm(-1). This in turn yields large, tunable changes to resonant wavelength, |Δλ(SMT)| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~10(3)), high-bandwidth ring resonators (>100 GHz). All-optical integrated Si-VO(2) devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.
doi_str_mv 10.1364/OE.21.010753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1351611142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1351611142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-bba1ca3f6d837e7ffcf9f99c069a4233cae5321e297b836a3d703051ba1f79703</originalsourceid><addsrcrecordid>eNpNUEtLAzEQDqLYWr15lhw9uDXZ2VeOUuoDCr3Yc8hmE41kN2uSFfrvjbSKp5n5-B7Mh9A1JUsKVXG_XS9zuiSU1CWcoDklrMgK0tSn__YZugjhgxBa1Kw-R7McqooxyOeo39noRSZdPwoZcTDWSDfg8d1FNxiJO_VlpArYqwRr8zZ51eF2j8WA3RiNFNbusRm6SSY8qP5HnY7ofBZd1qsoLE4BQzDRuOESnWlhg7o6zgXaPa5fV8_ZZvv0snrYZLKAJmZtK6gUoKuugVrVWkvNNGOSVEwUOYAUqoScqpzVbQOVgK4mQEqaZDo9SGCBbg--o3efkwqR9yZIZa0YlJsCp1DSilKazBbo7kCV3oXgleajN73we04J_ymYb9c8p_xQcKLfHJ2ntlfdH_m3UfgGSdV4Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1351611142</pqid></control><display><type>article</type><title>Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ryckman, Judson D ; Hallman, Kent A ; Marvel, Robert E ; Haglund, Richard F ; Weiss, Sharon M</creator><creatorcontrib>Ryckman, Judson D ; Hallman, Kent A ; Marvel, Robert E ; Haglund, Richard F ; Weiss, Sharon M</creatorcontrib><description>Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO(2) onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO(2) absorption modulators (L &lt; 1 μm) and ring-resonators (R ~ λ(0)). Optically inducing the SMT in a small, ~0.275 μm(2), active area of polycrystalline VO(2) enables Si-VO(2) structures to achieve record values of absorption modulation, ~4 dB μm(-1), and intracavity phase modulation, ~π/5 rad μm(-1). This in turn yields large, tunable changes to resonant wavelength, |Δλ(SMT)| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~10(3)), high-bandwidth ring resonators (&gt;100 GHz). All-optical integrated Si-VO(2) devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.21.010753</identifier><identifier>PMID: 23669932</identifier><language>eng</language><publisher>United States</publisher><subject>Equipment Design ; Equipment Failure Analysis ; Miniaturization ; Photons ; Semiconductors ; Silicon - chemistry ; Surface Plasmon Resonance - instrumentation</subject><ispartof>Optics express, 2013-05, Vol.21 (9), p.10753-10763</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-bba1ca3f6d837e7ffcf9f99c069a4233cae5321e297b836a3d703051ba1f79703</citedby><cites>FETCH-LOGICAL-c438t-bba1ca3f6d837e7ffcf9f99c069a4233cae5321e297b836a3d703051ba1f79703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23669932$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryckman, Judson D</creatorcontrib><creatorcontrib>Hallman, Kent A</creatorcontrib><creatorcontrib>Marvel, Robert E</creatorcontrib><creatorcontrib>Haglund, Richard F</creatorcontrib><creatorcontrib>Weiss, Sharon M</creatorcontrib><title>Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO(2) onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO(2) absorption modulators (L &lt; 1 μm) and ring-resonators (R ~ λ(0)). Optically inducing the SMT in a small, ~0.275 μm(2), active area of polycrystalline VO(2) enables Si-VO(2) structures to achieve record values of absorption modulation, ~4 dB μm(-1), and intracavity phase modulation, ~π/5 rad μm(-1). This in turn yields large, tunable changes to resonant wavelength, |Δλ(SMT)| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~10(3)), high-bandwidth ring resonators (&gt;100 GHz). All-optical integrated Si-VO(2) devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.</description><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Miniaturization</subject><subject>Photons</subject><subject>Semiconductors</subject><subject>Silicon - chemistry</subject><subject>Surface Plasmon Resonance - instrumentation</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNUEtLAzEQDqLYWr15lhw9uDXZ2VeOUuoDCr3Yc8hmE41kN2uSFfrvjbSKp5n5-B7Mh9A1JUsKVXG_XS9zuiSU1CWcoDklrMgK0tSn__YZugjhgxBa1Kw-R7McqooxyOeo39noRSZdPwoZcTDWSDfg8d1FNxiJO_VlpArYqwRr8zZ51eF2j8WA3RiNFNbusRm6SSY8qP5HnY7ofBZd1qsoLE4BQzDRuOESnWlhg7o6zgXaPa5fV8_ZZvv0snrYZLKAJmZtK6gUoKuugVrVWkvNNGOSVEwUOYAUqoScqpzVbQOVgK4mQEqaZDo9SGCBbg--o3efkwqR9yZIZa0YlJsCp1DSilKazBbo7kCV3oXgleajN73we04J_ymYb9c8p_xQcKLfHJ2ntlfdH_m3UfgGSdV4Ow</recordid><startdate>20130506</startdate><enddate>20130506</enddate><creator>Ryckman, Judson D</creator><creator>Hallman, Kent A</creator><creator>Marvel, Robert E</creator><creator>Haglund, Richard F</creator><creator>Weiss, Sharon M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130506</creationdate><title>Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition</title><author>Ryckman, Judson D ; Hallman, Kent A ; Marvel, Robert E ; Haglund, Richard F ; Weiss, Sharon M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-bba1ca3f6d837e7ffcf9f99c069a4233cae5321e297b836a3d703051ba1f79703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Miniaturization</topic><topic>Photons</topic><topic>Semiconductors</topic><topic>Silicon - chemistry</topic><topic>Surface Plasmon Resonance - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryckman, Judson D</creatorcontrib><creatorcontrib>Hallman, Kent A</creatorcontrib><creatorcontrib>Marvel, Robert E</creatorcontrib><creatorcontrib>Haglund, Richard F</creatorcontrib><creatorcontrib>Weiss, Sharon M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryckman, Judson D</au><au>Hallman, Kent A</au><au>Marvel, Robert E</au><au>Haglund, Richard F</au><au>Weiss, Sharon M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2013-05-06</date><risdate>2013</risdate><volume>21</volume><issue>9</issue><spage>10753</spage><epage>10763</epage><pages>10753-10763</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO(2) onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO(2) absorption modulators (L &lt; 1 μm) and ring-resonators (R ~ λ(0)). Optically inducing the SMT in a small, ~0.275 μm(2), active area of polycrystalline VO(2) enables Si-VO(2) structures to achieve record values of absorption modulation, ~4 dB μm(-1), and intracavity phase modulation, ~π/5 rad μm(-1). This in turn yields large, tunable changes to resonant wavelength, |Δλ(SMT)| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~10(3)), high-bandwidth ring resonators (&gt;100 GHz). All-optical integrated Si-VO(2) devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.</abstract><cop>United States</cop><pmid>23669932</pmid><doi>10.1364/OE.21.010753</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2013-05, Vol.21 (9), p.10753-10763
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_1351611142
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Equipment Design
Equipment Failure Analysis
Miniaturization
Photons
Semiconductors
Silicon - chemistry
Surface Plasmon Resonance - instrumentation
title Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-compact%20silicon%20photonic%20devices%20reconfigured%20by%20an%20optically%20induced%20semiconductor-to-metal%20transition&rft.jtitle=Optics%20express&rft.au=Ryckman,%20Judson%20D&rft.date=2013-05-06&rft.volume=21&rft.issue=9&rft.spage=10753&rft.epage=10763&rft.pages=10753-10763&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.21.010753&rft_dat=%3Cproquest_cross%3E1351611142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1351611142&rft_id=info:pmid/23669932&rfr_iscdi=true