Electrically induced transport of macromolecules through oral buccal mucosa

Abstract Objective To investigate the feasibility of iontophoretic delivery of large molecules across buccal mucosa, and to establish its potential for enhanced drug delivery. Methods Qualitative (6 h) and quantitative (8 and 36 h) assessment of porcine buccal mucosa, using a diffusion cell in vitro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2013-06, Vol.29 (6), p.674-681
Hauptverfasser: Patel, Mangala P, Churchman, Svetla T, Cruchley, Alan T, Braden, Michael, Williams, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 6
container_start_page 674
container_title Dental materials
container_volume 29
creator Patel, Mangala P
Churchman, Svetla T
Cruchley, Alan T
Braden, Michael
Williams, David M
description Abstract Objective To investigate the feasibility of iontophoretic delivery of large molecules across buccal mucosa, and to establish its potential for enhanced drug delivery. Methods Qualitative (6 h) and quantitative (8 and 36 h) assessment of porcine buccal mucosa, using a diffusion cell in vitro model, was carried out by fluorescent microscopy and UV/Vis spectroscopy respectively, with four fluorescently-labeled model species (3 and 10 kDa dextrans, 12 kDa parvalbumin and 66 kDa bovine serum albumin, BSA). Passive and iontophoresis parameters were obtained. The experimental iontophoresis data were compared with theoretical predictions. Results The two dextrans and parvalbumin showed enhanced permeation through buccal mucosa after anodal iontophoresis (1–6 h). Passive diffusion and cathodal iontophoresis resulted in minimal permeation. BSA could not be measured by either mode. Iontophoretic delivery profiles compared to passive delivery, had reduced time lags (30–50 versus ~270 min) and increased flux (~37 times faster). Time lag factor/enhancement ratio (TLF/ER) data confirmed that iontophoresis significantly enhanced permeation. The diffusion coefficients ( D , passive) for dextrans were significantly higher than for parvalbumin, with the converse obtained for solubility (C0 ); permeability coefficients ( P ) were similar for all three species. Potential differences ( V ) for the two higher kDa species were significantly higher than for the lowest kDa species. Experimental and theoretical data were in reasonable agreement. Significance The experimental and theoretical data, confirming enhanced delivery of the model species via iontophoresis, gave a suitable basis for its potential application in the mouth, in a clinical setting and opens pathways to further research for delivering precious drugs topically and systemically.
doi_str_mv 10.1016/j.dental.2013.03.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1350891663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564113000663</els_id><sourcerecordid>1350891663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-e1c55d011b92588e1f9fbc672fbfd86968c20419b5ca96e5b664830141acf97c3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpSDbbfINQfOzF2xn_ka1LIYSkDV3IIelZyPK40Ua2tpIV2G8fmU1z6KUwMJf3Zni_x9glwgYB-dfdpqdpVnZTAJYbSIP8A1th24gcQDQf2QoQRF7zCs_YeQg7AKgKgafsrCjrtuCiXLGfN5b07I1W1h4yM_VRU5_NXk1h7_ycuSEblfZudEkXLYVsfvIu_n7KnFc266JOzmyM2gX1iZ0Myga6eNtr9uv25vH6R769_353fbXNdYXNnBPquu4BsRNF3baEgxg6zZti6Ia-5YK3uoAKRVdrJTjVHedVWwJWqPQgGl2u2Zfj3b13fyKFWY4maLJWTeRikFjW0ArkvEzS6ihNEULwNMi9N6PyB4kgF4xyJ48Y5YJRQhrkyfb57UPsRurfTX-5JcG3o4BSzhdDXgZtaErsjE88Ze_M_z78e0BbMy01PNOBws5FPyWGEmUoJMiHpcqlSSxTi0uyV_83mpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350891663</pqid></control><display><type>article</type><title>Electrically induced transport of macromolecules through oral buccal mucosa</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Patel, Mangala P ; Churchman, Svetla T ; Cruchley, Alan T ; Braden, Michael ; Williams, David M</creator><creatorcontrib>Patel, Mangala P ; Churchman, Svetla T ; Cruchley, Alan T ; Braden, Michael ; Williams, David M</creatorcontrib><description>Abstract Objective To investigate the feasibility of iontophoretic delivery of large molecules across buccal mucosa, and to establish its potential for enhanced drug delivery. Methods Qualitative (6 h) and quantitative (8 and 36 h) assessment of porcine buccal mucosa, using a diffusion cell in vitro model, was carried out by fluorescent microscopy and UV/Vis spectroscopy respectively, with four fluorescently-labeled model species (3 and 10 kDa dextrans, 12 kDa parvalbumin and 66 kDa bovine serum albumin, BSA). Passive and iontophoresis parameters were obtained. The experimental iontophoresis data were compared with theoretical predictions. Results The two dextrans and parvalbumin showed enhanced permeation through buccal mucosa after anodal iontophoresis (1–6 h). Passive diffusion and cathodal iontophoresis resulted in minimal permeation. BSA could not be measured by either mode. Iontophoretic delivery profiles compared to passive delivery, had reduced time lags (30–50 versus ~270 min) and increased flux (~37 times faster). Time lag factor/enhancement ratio (TLF/ER) data confirmed that iontophoresis significantly enhanced permeation. The diffusion coefficients ( D , passive) for dextrans were significantly higher than for parvalbumin, with the converse obtained for solubility (C0 ); permeability coefficients ( P ) were similar for all three species. Potential differences ( V ) for the two higher kDa species were significantly higher than for the lowest kDa species. Experimental and theoretical data were in reasonable agreement. Significance The experimental and theoretical data, confirming enhanced delivery of the model species via iontophoresis, gave a suitable basis for its potential application in the mouth, in a clinical setting and opens pathways to further research for delivering precious drugs topically and systemically.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2013.03.016</identifier><identifier>PMID: 23582693</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Albumins - administration &amp; dosage ; Albumins - pharmacokinetics ; Animals ; Buccal mucosa ; Dentistry ; Dextran ; Dextrans - administration &amp; dosage ; Dextrans - pharmacokinetics ; Diffusion ; Diffusion Chambers, Culture ; Drug delivery ; Enhanced permeation ; Feasibility Studies ; Fluorescein ; Fluorescent Dyes ; Fluorescent microscopy ; Ionotophoresis ; Iontophoresis - methods ; Microscopy, Fluorescence ; Models, Biological ; Models, Chemical ; Molecular Weight ; Mouth Mucosa - drug effects ; Mouth Mucosa - metabolism ; Parvalbumin ; Parvalbumins - administration &amp; dosage ; Parvalbumins - pharmacokinetics ; Permeability ; Permeation cell ; Rhodamines ; Serum Albumin, Bovine - administration &amp; dosage ; Serum Albumin, Bovine - pharmacokinetics ; Solubility ; Swine ; Theoretical aspects ; Time Factors</subject><ispartof>Dental materials, 2013-06, Vol.29 (6), p.674-681</ispartof><rights>Academy of Dental Materials</rights><rights>2013 Academy of Dental Materials</rights><rights>Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-e1c55d011b92588e1f9fbc672fbfd86968c20419b5ca96e5b664830141acf97c3</citedby><cites>FETCH-LOGICAL-c417t-e1c55d011b92588e1f9fbc672fbfd86968c20419b5ca96e5b664830141acf97c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dental.2013.03.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23582693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Mangala P</creatorcontrib><creatorcontrib>Churchman, Svetla T</creatorcontrib><creatorcontrib>Cruchley, Alan T</creatorcontrib><creatorcontrib>Braden, Michael</creatorcontrib><creatorcontrib>Williams, David M</creatorcontrib><title>Electrically induced transport of macromolecules through oral buccal mucosa</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>Abstract Objective To investigate the feasibility of iontophoretic delivery of large molecules across buccal mucosa, and to establish its potential for enhanced drug delivery. Methods Qualitative (6 h) and quantitative (8 and 36 h) assessment of porcine buccal mucosa, using a diffusion cell in vitro model, was carried out by fluorescent microscopy and UV/Vis spectroscopy respectively, with four fluorescently-labeled model species (3 and 10 kDa dextrans, 12 kDa parvalbumin and 66 kDa bovine serum albumin, BSA). Passive and iontophoresis parameters were obtained. The experimental iontophoresis data were compared with theoretical predictions. Results The two dextrans and parvalbumin showed enhanced permeation through buccal mucosa after anodal iontophoresis (1–6 h). Passive diffusion and cathodal iontophoresis resulted in minimal permeation. BSA could not be measured by either mode. Iontophoretic delivery profiles compared to passive delivery, had reduced time lags (30–50 versus ~270 min) and increased flux (~37 times faster). Time lag factor/enhancement ratio (TLF/ER) data confirmed that iontophoresis significantly enhanced permeation. The diffusion coefficients ( D , passive) for dextrans were significantly higher than for parvalbumin, with the converse obtained for solubility (C0 ); permeability coefficients ( P ) were similar for all three species. Potential differences ( V ) for the two higher kDa species were significantly higher than for the lowest kDa species. Experimental and theoretical data were in reasonable agreement. Significance The experimental and theoretical data, confirming enhanced delivery of the model species via iontophoresis, gave a suitable basis for its potential application in the mouth, in a clinical setting and opens pathways to further research for delivering precious drugs topically and systemically.</description><subject>Advanced Basic Science</subject><subject>Albumins - administration &amp; dosage</subject><subject>Albumins - pharmacokinetics</subject><subject>Animals</subject><subject>Buccal mucosa</subject><subject>Dentistry</subject><subject>Dextran</subject><subject>Dextrans - administration &amp; dosage</subject><subject>Dextrans - pharmacokinetics</subject><subject>Diffusion</subject><subject>Diffusion Chambers, Culture</subject><subject>Drug delivery</subject><subject>Enhanced permeation</subject><subject>Feasibility Studies</subject><subject>Fluorescein</subject><subject>Fluorescent Dyes</subject><subject>Fluorescent microscopy</subject><subject>Ionotophoresis</subject><subject>Iontophoresis - methods</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Biological</subject><subject>Models, Chemical</subject><subject>Molecular Weight</subject><subject>Mouth Mucosa - drug effects</subject><subject>Mouth Mucosa - metabolism</subject><subject>Parvalbumin</subject><subject>Parvalbumins - administration &amp; dosage</subject><subject>Parvalbumins - pharmacokinetics</subject><subject>Permeability</subject><subject>Permeation cell</subject><subject>Rhodamines</subject><subject>Serum Albumin, Bovine - administration &amp; dosage</subject><subject>Serum Albumin, Bovine - pharmacokinetics</subject><subject>Solubility</subject><subject>Swine</subject><subject>Theoretical aspects</subject><subject>Time Factors</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9r3DAQxUVpSDbbfINQfOzF2xn_ka1LIYSkDV3IIelZyPK40Ua2tpIV2G8fmU1z6KUwMJf3Zni_x9glwgYB-dfdpqdpVnZTAJYbSIP8A1th24gcQDQf2QoQRF7zCs_YeQg7AKgKgafsrCjrtuCiXLGfN5b07I1W1h4yM_VRU5_NXk1h7_ycuSEblfZudEkXLYVsfvIu_n7KnFc266JOzmyM2gX1iZ0Myga6eNtr9uv25vH6R769_353fbXNdYXNnBPquu4BsRNF3baEgxg6zZti6Ia-5YK3uoAKRVdrJTjVHedVWwJWqPQgGl2u2Zfj3b13fyKFWY4maLJWTeRikFjW0ArkvEzS6ihNEULwNMi9N6PyB4kgF4xyJ48Y5YJRQhrkyfb57UPsRurfTX-5JcG3o4BSzhdDXgZtaErsjE88Ze_M_z78e0BbMy01PNOBws5FPyWGEmUoJMiHpcqlSSxTi0uyV_83mpg</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Patel, Mangala P</creator><creator>Churchman, Svetla T</creator><creator>Cruchley, Alan T</creator><creator>Braden, Michael</creator><creator>Williams, David M</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130601</creationdate><title>Electrically induced transport of macromolecules through oral buccal mucosa</title><author>Patel, Mangala P ; Churchman, Svetla T ; Cruchley, Alan T ; Braden, Michael ; Williams, David M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-e1c55d011b92588e1f9fbc672fbfd86968c20419b5ca96e5b664830141acf97c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced Basic Science</topic><topic>Albumins - administration &amp; dosage</topic><topic>Albumins - pharmacokinetics</topic><topic>Animals</topic><topic>Buccal mucosa</topic><topic>Dentistry</topic><topic>Dextran</topic><topic>Dextrans - administration &amp; dosage</topic><topic>Dextrans - pharmacokinetics</topic><topic>Diffusion</topic><topic>Diffusion Chambers, Culture</topic><topic>Drug delivery</topic><topic>Enhanced permeation</topic><topic>Feasibility Studies</topic><topic>Fluorescein</topic><topic>Fluorescent Dyes</topic><topic>Fluorescent microscopy</topic><topic>Ionotophoresis</topic><topic>Iontophoresis - methods</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Biological</topic><topic>Models, Chemical</topic><topic>Molecular Weight</topic><topic>Mouth Mucosa - drug effects</topic><topic>Mouth Mucosa - metabolism</topic><topic>Parvalbumin</topic><topic>Parvalbumins - administration &amp; dosage</topic><topic>Parvalbumins - pharmacokinetics</topic><topic>Permeability</topic><topic>Permeation cell</topic><topic>Rhodamines</topic><topic>Serum Albumin, Bovine - administration &amp; dosage</topic><topic>Serum Albumin, Bovine - pharmacokinetics</topic><topic>Solubility</topic><topic>Swine</topic><topic>Theoretical aspects</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Mangala P</creatorcontrib><creatorcontrib>Churchman, Svetla T</creatorcontrib><creatorcontrib>Cruchley, Alan T</creatorcontrib><creatorcontrib>Braden, Michael</creatorcontrib><creatorcontrib>Williams, David M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Mangala P</au><au>Churchman, Svetla T</au><au>Cruchley, Alan T</au><au>Braden, Michael</au><au>Williams, David M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically induced transport of macromolecules through oral buccal mucosa</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>29</volume><issue>6</issue><spage>674</spage><epage>681</epage><pages>674-681</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>Abstract Objective To investigate the feasibility of iontophoretic delivery of large molecules across buccal mucosa, and to establish its potential for enhanced drug delivery. Methods Qualitative (6 h) and quantitative (8 and 36 h) assessment of porcine buccal mucosa, using a diffusion cell in vitro model, was carried out by fluorescent microscopy and UV/Vis spectroscopy respectively, with four fluorescently-labeled model species (3 and 10 kDa dextrans, 12 kDa parvalbumin and 66 kDa bovine serum albumin, BSA). Passive and iontophoresis parameters were obtained. The experimental iontophoresis data were compared with theoretical predictions. Results The two dextrans and parvalbumin showed enhanced permeation through buccal mucosa after anodal iontophoresis (1–6 h). Passive diffusion and cathodal iontophoresis resulted in minimal permeation. BSA could not be measured by either mode. Iontophoretic delivery profiles compared to passive delivery, had reduced time lags (30–50 versus ~270 min) and increased flux (~37 times faster). Time lag factor/enhancement ratio (TLF/ER) data confirmed that iontophoresis significantly enhanced permeation. The diffusion coefficients ( D , passive) for dextrans were significantly higher than for parvalbumin, with the converse obtained for solubility (C0 ); permeability coefficients ( P ) were similar for all three species. Potential differences ( V ) for the two higher kDa species were significantly higher than for the lowest kDa species. Experimental and theoretical data were in reasonable agreement. Significance The experimental and theoretical data, confirming enhanced delivery of the model species via iontophoresis, gave a suitable basis for its potential application in the mouth, in a clinical setting and opens pathways to further research for delivering precious drugs topically and systemically.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23582693</pmid><doi>10.1016/j.dental.2013.03.016</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0109-5641
ispartof Dental materials, 2013-06, Vol.29 (6), p.674-681
issn 0109-5641
1879-0097
language eng
recordid cdi_proquest_miscellaneous_1350891663
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Albumins - administration & dosage
Albumins - pharmacokinetics
Animals
Buccal mucosa
Dentistry
Dextran
Dextrans - administration & dosage
Dextrans - pharmacokinetics
Diffusion
Diffusion Chambers, Culture
Drug delivery
Enhanced permeation
Feasibility Studies
Fluorescein
Fluorescent Dyes
Fluorescent microscopy
Ionotophoresis
Iontophoresis - methods
Microscopy, Fluorescence
Models, Biological
Models, Chemical
Molecular Weight
Mouth Mucosa - drug effects
Mouth Mucosa - metabolism
Parvalbumin
Parvalbumins - administration & dosage
Parvalbumins - pharmacokinetics
Permeability
Permeation cell
Rhodamines
Serum Albumin, Bovine - administration & dosage
Serum Albumin, Bovine - pharmacokinetics
Solubility
Swine
Theoretical aspects
Time Factors
title Electrically induced transport of macromolecules through oral buccal mucosa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20induced%20transport%20of%20macromolecules%20through%20oral%20buccal%20mucosa&rft.jtitle=Dental%20materials&rft.au=Patel,%20Mangala%20P&rft.date=2013-06-01&rft.volume=29&rft.issue=6&rft.spage=674&rft.epage=681&rft.pages=674-681&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2013.03.016&rft_dat=%3Cproquest_cross%3E1350891663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350891663&rft_id=info:pmid/23582693&rft_els_id=S0109564113000663&rfr_iscdi=true