Paradata for Nonresponse Adjustment
Survey researchers and practitioners use nonresponse adjustment weights to mitigate the effects of survey nonresponse on sample estimates. One challenge in creating these weights is finding useful auxiliary data that predict both the probability of participating in the survey and the survey variable...
Gespeichert in:
Veröffentlicht in: | The Annals of the American Academy of Political and Social Science 2013-01, Vol.645 (1), p.142-170 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | 1 |
container_start_page | 142 |
container_title | The Annals of the American Academy of Political and Social Science |
container_volume | 645 |
creator | OLSON, KRISTEN |
description | Survey researchers and practitioners use nonresponse adjustment weights to mitigate the effects of survey nonresponse on sample estimates. One challenge in creating these weights is finding useful auxiliary data that predict both the probability of participating in the survey and the survey variables of interest. This article reviews the use of paradata for nonresponse adjustment. Five different types of paradata are considered: neighborhood observations, observations of the sampled housing unit, observations of persons in the sampled housing unit, call records, and observations about the interviewer-householder interaction. Empirical evidence about the predictive value of these paradata for predicting both participation and survey variables is examined. Challenges of using these paradata are also identified, along with outstanding issues and opportunities related to the use of paradata for nonresponse adjustment. |
doi_str_mv | 10.1177/0002716212459475 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1350887631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23479085</jstor_id><sage_id>10.1177_0002716212459475</sage_id><sourcerecordid>23479085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-ad4a9443bf76c5d525258a2b1ebcd33743918d8ef4cfab416874c766481209133</originalsourceid><addsrcrecordid>eNqNkUtLw0AQxxdRsFbvXoRCL16iOzv7PJbiC4p60HPYJBtpaLN1Nzn47d0QESmIzhzmML_5z4uQc6BXAEpdU0qZAsmAcWG4EgdkAkKwDJGbQzIZ0tmQPyYnMTZ0MDATMn-2wVa2s7Pah9mjb4OLO99GN1tUTR-7rWu7U3JU2010Z19xSl5vb16W99nq6e5huVhlpaCiy2zFreEci1rJUlSCJdeWFeCKskJUHA3oSrual7UtOEiteKmk5BoYNYA4JZej7i74997FLt-uY-k2G9s638ccUFCtlUT4G2UaJU_99f9QlIazhM730Mb3oU07JwoNppvxYUw6UmXwMQZX57uw3trwkQPNh1_k-79IJdlYEu2b-yH6O38x8k3sfPjWZ8iVoVrgJ3Pwjbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1239300043</pqid></control><display><type>article</type><title>Paradata for Nonresponse Adjustment</title><source>Access via SAGE</source><source>Worldwide Political Science Abstracts</source><source>HeinOnline Law Journal Library</source><source>Sociological Abstracts</source><creator>OLSON, KRISTEN</creator><contributor>Massey, Douglas S ; Tourangeau, Roger</contributor><creatorcontrib>OLSON, KRISTEN ; Massey, Douglas S ; Tourangeau, Roger</creatorcontrib><description>Survey researchers and practitioners use nonresponse adjustment weights to mitigate the effects of survey nonresponse on sample estimates. One challenge in creating these weights is finding useful auxiliary data that predict both the probability of participating in the survey and the survey variables of interest. This article reviews the use of paradata for nonresponse adjustment. Five different types of paradata are considered: neighborhood observations, observations of the sampled housing unit, observations of persons in the sampled housing unit, call records, and observations about the interviewer-householder interaction. Empirical evidence about the predictive value of these paradata for predicting both participation and survey variables is examined. Challenges of using these paradata are also identified, along with outstanding issues and opportunities related to the use of paradata for nonresponse adjustment.</description><identifier>ISSN: 0002-7162</identifier><identifier>EISSN: 1552-3349</identifier><identifier>DOI: 10.1177/0002716212459475</identifier><identifier>CODEN: AAYPAV</identifier><language>eng</language><publisher>Los Angeles, CA: Sage Publications</publisher><subject>Adjustment ; Data analysis ; Error correction models ; Estimation ; Health surveys ; Housing ; Housing units ; Interaction ; Methodology ; Neighborhoods ; Non-response ; Observational research ; Opinion polls ; Paradata ; Participation ; Polls & surveys ; Prediction ; Probability ; Public opinion ; Response rates ; Sampling ; Social surveys ; Survey research ; Surveys ; Telephones ; Values</subject><ispartof>The Annals of the American Academy of Political and Social Science, 2013-01, Vol.645 (1), p.142-170</ispartof><rights>Copyright © 2013 The American Academy of Political and Social Science</rights><rights>American Academy of Political & Social Science 2013</rights><rights>Copyright SAGE PUBLICATIONS, INC. Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-ad4a9443bf76c5d525258a2b1ebcd33743918d8ef4cfab416874c766481209133</citedby><cites>FETCH-LOGICAL-c505t-ad4a9443bf76c5d525258a2b1ebcd33743918d8ef4cfab416874c766481209133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0002716212459475$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0002716212459475$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,33774,33775,43621,43622</link.rule.ids></links><search><contributor>Massey, Douglas S</contributor><contributor>Tourangeau, Roger</contributor><creatorcontrib>OLSON, KRISTEN</creatorcontrib><title>Paradata for Nonresponse Adjustment</title><title>The Annals of the American Academy of Political and Social Science</title><description>Survey researchers and practitioners use nonresponse adjustment weights to mitigate the effects of survey nonresponse on sample estimates. One challenge in creating these weights is finding useful auxiliary data that predict both the probability of participating in the survey and the survey variables of interest. This article reviews the use of paradata for nonresponse adjustment. Five different types of paradata are considered: neighborhood observations, observations of the sampled housing unit, observations of persons in the sampled housing unit, call records, and observations about the interviewer-householder interaction. Empirical evidence about the predictive value of these paradata for predicting both participation and survey variables is examined. Challenges of using these paradata are also identified, along with outstanding issues and opportunities related to the use of paradata for nonresponse adjustment.</description><subject>Adjustment</subject><subject>Data analysis</subject><subject>Error correction models</subject><subject>Estimation</subject><subject>Health surveys</subject><subject>Housing</subject><subject>Housing units</subject><subject>Interaction</subject><subject>Methodology</subject><subject>Neighborhoods</subject><subject>Non-response</subject><subject>Observational research</subject><subject>Opinion polls</subject><subject>Paradata</subject><subject>Participation</subject><subject>Polls & surveys</subject><subject>Prediction</subject><subject>Probability</subject><subject>Public opinion</subject><subject>Response rates</subject><subject>Sampling</subject><subject>Social surveys</subject><subject>Survey research</subject><subject>Surveys</subject><subject>Telephones</subject><subject>Values</subject><issn>0002-7162</issn><issn>1552-3349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>BHHNA</sourceid><recordid>eNqNkUtLw0AQxxdRsFbvXoRCL16iOzv7PJbiC4p60HPYJBtpaLN1Nzn47d0QESmIzhzmML_5z4uQc6BXAEpdU0qZAsmAcWG4EgdkAkKwDJGbQzIZ0tmQPyYnMTZ0MDATMn-2wVa2s7Pah9mjb4OLO99GN1tUTR-7rWu7U3JU2010Z19xSl5vb16W99nq6e5huVhlpaCiy2zFreEci1rJUlSCJdeWFeCKskJUHA3oSrual7UtOEiteKmk5BoYNYA4JZej7i74997FLt-uY-k2G9s638ccUFCtlUT4G2UaJU_99f9QlIazhM730Mb3oU07JwoNppvxYUw6UmXwMQZX57uw3trwkQPNh1_k-79IJdlYEu2b-yH6O38x8k3sfPjWZ8iVoVrgJ3Pwjbs</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>OLSON, KRISTEN</creator><general>Sage Publications</general><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>7UB</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>20130101</creationdate><title>Paradata for Nonresponse Adjustment</title><author>OLSON, KRISTEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-ad4a9443bf76c5d525258a2b1ebcd33743918d8ef4cfab416874c766481209133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adjustment</topic><topic>Data analysis</topic><topic>Error correction models</topic><topic>Estimation</topic><topic>Health surveys</topic><topic>Housing</topic><topic>Housing units</topic><topic>Interaction</topic><topic>Methodology</topic><topic>Neighborhoods</topic><topic>Non-response</topic><topic>Observational research</topic><topic>Opinion polls</topic><topic>Paradata</topic><topic>Participation</topic><topic>Polls & surveys</topic><topic>Prediction</topic><topic>Probability</topic><topic>Public opinion</topic><topic>Response rates</topic><topic>Sampling</topic><topic>Social surveys</topic><topic>Survey research</topic><topic>Surveys</topic><topic>Telephones</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OLSON, KRISTEN</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>The Annals of the American Academy of Political and Social Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OLSON, KRISTEN</au><au>Massey, Douglas S</au><au>Tourangeau, Roger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paradata for Nonresponse Adjustment</atitle><jtitle>The Annals of the American Academy of Political and Social Science</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>645</volume><issue>1</issue><spage>142</spage><epage>170</epage><pages>142-170</pages><issn>0002-7162</issn><eissn>1552-3349</eissn><coden>AAYPAV</coden><abstract>Survey researchers and practitioners use nonresponse adjustment weights to mitigate the effects of survey nonresponse on sample estimates. One challenge in creating these weights is finding useful auxiliary data that predict both the probability of participating in the survey and the survey variables of interest. This article reviews the use of paradata for nonresponse adjustment. Five different types of paradata are considered: neighborhood observations, observations of the sampled housing unit, observations of persons in the sampled housing unit, call records, and observations about the interviewer-householder interaction. Empirical evidence about the predictive value of these paradata for predicting both participation and survey variables is examined. Challenges of using these paradata are also identified, along with outstanding issues and opportunities related to the use of paradata for nonresponse adjustment.</abstract><cop>Los Angeles, CA</cop><pub>Sage Publications</pub><doi>10.1177/0002716212459475</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7162 |
ispartof | The Annals of the American Academy of Political and Social Science, 2013-01, Vol.645 (1), p.142-170 |
issn | 0002-7162 1552-3349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1350887631 |
source | Access via SAGE; Worldwide Political Science Abstracts; HeinOnline Law Journal Library; Sociological Abstracts |
subjects | Adjustment Data analysis Error correction models Estimation Health surveys Housing Housing units Interaction Methodology Neighborhoods Non-response Observational research Opinion polls Paradata Participation Polls & surveys Prediction Probability Public opinion Response rates Sampling Social surveys Survey research Surveys Telephones Values |
title | Paradata for Nonresponse Adjustment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paradata%20for%20Nonresponse%20Adjustment&rft.jtitle=The%20Annals%20of%20the%20American%20Academy%20of%20Political%20and%20Social%20Science&rft.au=OLSON,%20KRISTEN&rft.date=2013-01-01&rft.volume=645&rft.issue=1&rft.spage=142&rft.epage=170&rft.pages=142-170&rft.issn=0002-7162&rft.eissn=1552-3349&rft.coden=AAYPAV&rft_id=info:doi/10.1177/0002716212459475&rft_dat=%3Cjstor_proqu%3E23479085%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1239300043&rft_id=info:pmid/&rft_jstor_id=23479085&rft_sage_id=10.1177_0002716212459475&rfr_iscdi=true |