Large-scale organic nanowire lithography and electronics
Controlled alignment and patterning of individual semiconducting nanowires at a desired position in a large area is a key requirement for electronic device applications. High-speed, large-area printing of highly aligned individual nanowires that allows control of the exact numbers of wires, and thei...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013-04, Vol.4 (1), p.1773-1773, Article 1773 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1773 |
---|---|
container_issue | 1 |
container_start_page | 1773 |
container_title | Nature communications |
container_volume | 4 |
creator | Min, Sung-Yong Kim, Tae-Sik Kim, Beom Joon Cho, Himchan Noh, Yong-Young Yang, Hoichang Cho, Jeong Ho Lee, Tae-Woo |
description | Controlled alignment and patterning of individual semiconducting nanowires at a desired position in a large area is a key requirement for electronic device applications. High-speed, large-area printing of highly aligned individual nanowires that allows control of the exact numbers of wires, and their orientations and dimensions is a significant challenge for practical electronics applications. Here we use a high-speed electrohydrodynamic organic nanowire printer to print large-area organic semiconducting nanowire arrays directly on device substrates in a precisely, individually controlled manner; this method also enables sophisticated large-area nanowire lithography for nano-electronics. We achieve a maximum field-effect mobility up to 9.7 cm
2
V
−1
s
−1
with extremely low contact resistance ( |
doi_str_mv | 10.1038/ncomms2785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349704213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349704213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-535a837dabb1955be0ea935c393c7fd3cafbb3bcf005bba0e0f6ff438f5055cc3</originalsourceid><addsrcrecordid>eNpl0E9LwzAYBvAgihtzFz-AFLyIUk36Jmt6lOE_GHjRc0nSpOtok5m0yL690U0dmksC-fG8Lw9CpwRfEwz8xirXdSHLOTtA4wxTkpI8g8O99whNQ1jheKAgnNJjNMpgxoBwNkZ8IXyt06BEqxPna2EblVhh3XvjddI2_dLVXqyXm0TYKtGtVr130YQTdGREG_R0d0_Q6_3dy_wxXTw_PM1vF6miDPqUARMc8kpISQrGpMZaFMAUFKByU4ESRkqQymDMpBRYYzMzhgI3DDOmFEzQxTZ37d3boENfdk1Qum2F1W4IJQFa5JhmBCI9_0NXbvA2bvelOIasyKK63CrlXQhem3Ltm074TUlw-Vlp-VtpxGe7yEF2uvqh3wVGcLUFIX7ZWvu9mf_jPgAeC4Dp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349803292</pqid></control><display><type>article</type><title>Large-scale organic nanowire lithography and electronics</title><source>Springer Nature OA/Free Journals</source><creator>Min, Sung-Yong ; Kim, Tae-Sik ; Kim, Beom Joon ; Cho, Himchan ; Noh, Yong-Young ; Yang, Hoichang ; Cho, Jeong Ho ; Lee, Tae-Woo</creator><creatorcontrib>Min, Sung-Yong ; Kim, Tae-Sik ; Kim, Beom Joon ; Cho, Himchan ; Noh, Yong-Young ; Yang, Hoichang ; Cho, Jeong Ho ; Lee, Tae-Woo</creatorcontrib><description>Controlled alignment and patterning of individual semiconducting nanowires at a desired position in a large area is a key requirement for electronic device applications. High-speed, large-area printing of highly aligned individual nanowires that allows control of the exact numbers of wires, and their orientations and dimensions is a significant challenge for practical electronics applications. Here we use a high-speed electrohydrodynamic organic nanowire printer to print large-area organic semiconducting nanowire arrays directly on device substrates in a precisely, individually controlled manner; this method also enables sophisticated large-area nanowire lithography for nano-electronics. We achieve a maximum field-effect mobility up to 9.7 cm
2
V
−1
s
−1
with extremely low contact resistance (<5.53 Ω cm), even in nano-channel transistors based on single-stranded semiconducting nanowires. We also demonstrate complementary inverter circuit arrays comprising well-aligned
p
-type and
n
-type organic semiconducting nanowires. Extremely fast nanolithography using printed semiconducting nanowire arrays provide a simple, reliable method of fabricating large-area and flexible nano-electronics.
The high-speed, large-area printing of aligned semiconducting nanowires is vital for practical device applications. Here, the authors use a high-speed printing technique to print semiconducting nanowire arrays onto device substrates with precise nanowire control, and high field-effect mobilities are observed.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2785</identifier><identifier>PMID: 23653185</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/624/1107/1109 ; 639/925/357/1016 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2013-04, Vol.4 (1), p.1773-1773, Article 1773</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Apr 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-535a837dabb1955be0ea935c393c7fd3cafbb3bcf005bba0e0f6ff438f5055cc3</citedby><cites>FETCH-LOGICAL-c453t-535a837dabb1955be0ea935c393c7fd3cafbb3bcf005bba0e0f6ff438f5055cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms2785$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms2785$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms2785$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23653185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Sung-Yong</creatorcontrib><creatorcontrib>Kim, Tae-Sik</creatorcontrib><creatorcontrib>Kim, Beom Joon</creatorcontrib><creatorcontrib>Cho, Himchan</creatorcontrib><creatorcontrib>Noh, Yong-Young</creatorcontrib><creatorcontrib>Yang, Hoichang</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><title>Large-scale organic nanowire lithography and electronics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Controlled alignment and patterning of individual semiconducting nanowires at a desired position in a large area is a key requirement for electronic device applications. High-speed, large-area printing of highly aligned individual nanowires that allows control of the exact numbers of wires, and their orientations and dimensions is a significant challenge for practical electronics applications. Here we use a high-speed electrohydrodynamic organic nanowire printer to print large-area organic semiconducting nanowire arrays directly on device substrates in a precisely, individually controlled manner; this method also enables sophisticated large-area nanowire lithography for nano-electronics. We achieve a maximum field-effect mobility up to 9.7 cm
2
V
−1
s
−1
with extremely low contact resistance (<5.53 Ω cm), even in nano-channel transistors based on single-stranded semiconducting nanowires. We also demonstrate complementary inverter circuit arrays comprising well-aligned
p
-type and
n
-type organic semiconducting nanowires. Extremely fast nanolithography using printed semiconducting nanowire arrays provide a simple, reliable method of fabricating large-area and flexible nano-electronics.
The high-speed, large-area printing of aligned semiconducting nanowires is vital for practical device applications. Here, the authors use a high-speed printing technique to print semiconducting nanowire arrays onto device substrates with precise nanowire control, and high field-effect mobilities are observed.</description><subject>639/301/119/995</subject><subject>639/624/1107/1109</subject><subject>639/925/357/1016</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E9LwzAYBvAgihtzFz-AFLyIUk36Jmt6lOE_GHjRc0nSpOtok5m0yL690U0dmksC-fG8Lw9CpwRfEwz8xirXdSHLOTtA4wxTkpI8g8O99whNQ1jheKAgnNJjNMpgxoBwNkZ8IXyt06BEqxPna2EblVhh3XvjddI2_dLVXqyXm0TYKtGtVr130YQTdGREG_R0d0_Q6_3dy_wxXTw_PM1vF6miDPqUARMc8kpISQrGpMZaFMAUFKByU4ESRkqQymDMpBRYYzMzhgI3DDOmFEzQxTZ37d3boENfdk1Qum2F1W4IJQFa5JhmBCI9_0NXbvA2bvelOIasyKK63CrlXQhem3Ltm074TUlw-Vlp-VtpxGe7yEF2uvqh3wVGcLUFIX7ZWvu9mf_jPgAeC4Dp</recordid><startdate>20130430</startdate><enddate>20130430</enddate><creator>Min, Sung-Yong</creator><creator>Kim, Tae-Sik</creator><creator>Kim, Beom Joon</creator><creator>Cho, Himchan</creator><creator>Noh, Yong-Young</creator><creator>Yang, Hoichang</creator><creator>Cho, Jeong Ho</creator><creator>Lee, Tae-Woo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20130430</creationdate><title>Large-scale organic nanowire lithography and electronics</title><author>Min, Sung-Yong ; Kim, Tae-Sik ; Kim, Beom Joon ; Cho, Himchan ; Noh, Yong-Young ; Yang, Hoichang ; Cho, Jeong Ho ; Lee, Tae-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-535a837dabb1955be0ea935c393c7fd3cafbb3bcf005bba0e0f6ff438f5055cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119/995</topic><topic>639/624/1107/1109</topic><topic>639/925/357/1016</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Sung-Yong</creatorcontrib><creatorcontrib>Kim, Tae-Sik</creatorcontrib><creatorcontrib>Kim, Beom Joon</creatorcontrib><creatorcontrib>Cho, Himchan</creatorcontrib><creatorcontrib>Noh, Yong-Young</creatorcontrib><creatorcontrib>Yang, Hoichang</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Min, Sung-Yong</au><au>Kim, Tae-Sik</au><au>Kim, Beom Joon</au><au>Cho, Himchan</au><au>Noh, Yong-Young</au><au>Yang, Hoichang</au><au>Cho, Jeong Ho</au><au>Lee, Tae-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale organic nanowire lithography and electronics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-04-30</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1773</spage><epage>1773</epage><pages>1773-1773</pages><artnum>1773</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Controlled alignment and patterning of individual semiconducting nanowires at a desired position in a large area is a key requirement for electronic device applications. High-speed, large-area printing of highly aligned individual nanowires that allows control of the exact numbers of wires, and their orientations and dimensions is a significant challenge for practical electronics applications. Here we use a high-speed electrohydrodynamic organic nanowire printer to print large-area organic semiconducting nanowire arrays directly on device substrates in a precisely, individually controlled manner; this method also enables sophisticated large-area nanowire lithography for nano-electronics. We achieve a maximum field-effect mobility up to 9.7 cm
2
V
−1
s
−1
with extremely low contact resistance (<5.53 Ω cm), even in nano-channel transistors based on single-stranded semiconducting nanowires. We also demonstrate complementary inverter circuit arrays comprising well-aligned
p
-type and
n
-type organic semiconducting nanowires. Extremely fast nanolithography using printed semiconducting nanowire arrays provide a simple, reliable method of fabricating large-area and flexible nano-electronics.
The high-speed, large-area printing of aligned semiconducting nanowires is vital for practical device applications. Here, the authors use a high-speed printing technique to print semiconducting nanowire arrays onto device substrates with precise nanowire control, and high field-effect mobilities are observed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23653185</pmid><doi>10.1038/ncomms2785</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2013-04, Vol.4 (1), p.1773-1773, Article 1773 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349704213 |
source | Springer Nature OA/Free Journals |
subjects | 639/301/119/995 639/624/1107/1109 639/925/357/1016 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Large-scale organic nanowire lithography and electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20organic%20nanowire%20lithography%20and%20electronics&rft.jtitle=Nature%20communications&rft.au=Min,%20Sung-Yong&rft.date=2013-04-30&rft.volume=4&rft.issue=1&rft.spage=1773&rft.epage=1773&rft.pages=1773-1773&rft.artnum=1773&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2785&rft_dat=%3Cproquest_C6C%3E1349704213%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349803292&rft_id=info:pmid/23653185&rfr_iscdi=true |