Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail

The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2013-01, Vol.29 (1), p.178-185
Hauptverfasser: Toivanen, Petri K, Janhunen, Pekka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 1
container_start_page 178
container_title Journal of propulsion and power
container_volume 29
creator Toivanen, Petri K
Janhunen, Pekka
description The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately to produce net torque for attitude control and thrust vectoring. A solution for the voltage modulation that maintains any realistic sail angle under constant solar wind is obtained. Together with the adiabatic invariance of the angular momentum, the tether spin rate and coning angle are solved as functions of temporal changes in the solar wind dynamic pressure, the tether length, or the sail angle. The obtained modulation also gives an estimate for the fraction of sail performance (electron gun power) to be reserved for sail control. We also show that orbiting around the sun with a fixed sail angle leads to a gradual increase (decrease) in the sail spin rate when spiraling outward (inward). This effect arises from the fact that the modulation of the electric sail force can only partially cancel the Coriolis effect, and the remaining component lays in the spin plane having a cumulative effect on the spin rate.
doi_str_mv 10.2514/1.B34330
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349465258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493571861</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-de7cb56047d73241f0a6db61d3d57f425860fc23fc64a48c7bae8b76eec937003</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgCtYq-BMCInjZmu9kj1rqBwgKrXoM2WxWU7abmuwe_PemVFB60FMYeHhnMgPAKUYTwjG7xJNryihFe2CEOaUFVVLsgxGSTBVMcHUIjlJaIoSFEnIEpvO17-BTazoHp6HrY2ih6Wq4eI9D6uGLs32IvnuDoYGzNlfRWzgPrYnw1Wc3N749BgeNaZM7-X7H4PlmtpjeFQ-Pt_fTq4fCMMb7onbSVlwgJmtJCcMNMqKuBK5pzWXDCFcCNZbQxgpmmLKyMk5VUjhnSyoRomNwsc1dx_AxuNTrlU_WtZvhw5A0loJgUirG_6eUlXkbuWemZzt0GYbY5Y9owkrKJVYC_6UwzUFSEaF-2toYUoqu0evoVyZ-aoz05jwa6-15Mj3fUuON-RW2674AAF2JYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365278268</pqid></control><display><type>article</type><title>Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail</title><source>Alma/SFX Local Collection</source><creator>Toivanen, Petri K ; Janhunen, Pekka</creator><creatorcontrib>Toivanen, Petri K ; Janhunen, Pekka</creatorcontrib><description>The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately to produce net torque for attitude control and thrust vectoring. A solution for the voltage modulation that maintains any realistic sail angle under constant solar wind is obtained. Together with the adiabatic invariance of the angular momentum, the tether spin rate and coning angle are solved as functions of temporal changes in the solar wind dynamic pressure, the tether length, or the sail angle. The obtained modulation also gives an estimate for the fraction of sail performance (electron gun power) to be reserved for sail control. We also show that orbiting around the sun with a fixed sail angle leads to a gradual increase (decrease) in the sail spin rate when spiraling outward (inward). This effect arises from the fact that the modulation of the electric sail force can only partially cancel the Coriolis effect, and the remaining component lays in the spin plane having a cumulative effect on the spin rate.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B34330</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Angular momentum ; Attitude control ; Coriolis effect ; Dynamic pressure ; Electric potential ; Electron guns ; Modulation ; Planes ; Propulsion systems ; Sails ; Solar wind ; Sun ; Tethers ; Thrust ; Thrust vector control ; Voltage ; Wind power generation</subject><ispartof>Journal of propulsion and power, 2013-01, Vol.29 (1), p.178-185</ispartof><rights>Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3876/12 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-de7cb56047d73241f0a6db61d3d57f425860fc23fc64a48c7bae8b76eec937003</citedby><cites>FETCH-LOGICAL-a445t-de7cb56047d73241f0a6db61d3d57f425860fc23fc64a48c7bae8b76eec937003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Toivanen, Petri K</creatorcontrib><creatorcontrib>Janhunen, Pekka</creatorcontrib><title>Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail</title><title>Journal of propulsion and power</title><description>The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately to produce net torque for attitude control and thrust vectoring. A solution for the voltage modulation that maintains any realistic sail angle under constant solar wind is obtained. Together with the adiabatic invariance of the angular momentum, the tether spin rate and coning angle are solved as functions of temporal changes in the solar wind dynamic pressure, the tether length, or the sail angle. The obtained modulation also gives an estimate for the fraction of sail performance (electron gun power) to be reserved for sail control. We also show that orbiting around the sun with a fixed sail angle leads to a gradual increase (decrease) in the sail spin rate when spiraling outward (inward). This effect arises from the fact that the modulation of the electric sail force can only partially cancel the Coriolis effect, and the remaining component lays in the spin plane having a cumulative effect on the spin rate.</description><subject>Angular momentum</subject><subject>Attitude control</subject><subject>Coriolis effect</subject><subject>Dynamic pressure</subject><subject>Electric potential</subject><subject>Electron guns</subject><subject>Modulation</subject><subject>Planes</subject><subject>Propulsion systems</subject><subject>Sails</subject><subject>Solar wind</subject><subject>Sun</subject><subject>Tethers</subject><subject>Thrust</subject><subject>Thrust vector control</subject><subject>Voltage</subject><subject>Wind power generation</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LAzEQBuAgCtYq-BMCInjZmu9kj1rqBwgKrXoM2WxWU7abmuwe_PemVFB60FMYeHhnMgPAKUYTwjG7xJNryihFe2CEOaUFVVLsgxGSTBVMcHUIjlJaIoSFEnIEpvO17-BTazoHp6HrY2ih6Wq4eI9D6uGLs32IvnuDoYGzNlfRWzgPrYnw1Wc3N749BgeNaZM7-X7H4PlmtpjeFQ-Pt_fTq4fCMMb7onbSVlwgJmtJCcMNMqKuBK5pzWXDCFcCNZbQxgpmmLKyMk5VUjhnSyoRomNwsc1dx_AxuNTrlU_WtZvhw5A0loJgUirG_6eUlXkbuWemZzt0GYbY5Y9owkrKJVYC_6UwzUFSEaF-2toYUoqu0evoVyZ-aoz05jwa6-15Mj3fUuON-RW2674AAF2JYQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Toivanen, Petri K</creator><creator>Janhunen, Pekka</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20130101</creationdate><title>Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail</title><author>Toivanen, Petri K ; Janhunen, Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-de7cb56047d73241f0a6db61d3d57f425860fc23fc64a48c7bae8b76eec937003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angular momentum</topic><topic>Attitude control</topic><topic>Coriolis effect</topic><topic>Dynamic pressure</topic><topic>Electric potential</topic><topic>Electron guns</topic><topic>Modulation</topic><topic>Planes</topic><topic>Propulsion systems</topic><topic>Sails</topic><topic>Solar wind</topic><topic>Sun</topic><topic>Tethers</topic><topic>Thrust</topic><topic>Thrust vector control</topic><topic>Voltage</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toivanen, Petri K</creatorcontrib><creatorcontrib>Janhunen, Pekka</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toivanen, Petri K</au><au>Janhunen, Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail</atitle><jtitle>Journal of propulsion and power</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>29</volume><issue>1</issue><spage>178</spage><epage>185</epage><pages>178-185</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately to produce net torque for attitude control and thrust vectoring. A solution for the voltage modulation that maintains any realistic sail angle under constant solar wind is obtained. Together with the adiabatic invariance of the angular momentum, the tether spin rate and coning angle are solved as functions of temporal changes in the solar wind dynamic pressure, the tether length, or the sail angle. The obtained modulation also gives an estimate for the fraction of sail performance (electron gun power) to be reserved for sail control. We also show that orbiting around the sun with a fixed sail angle leads to a gradual increase (decrease) in the sail spin rate when spiraling outward (inward). This effect arises from the fact that the modulation of the electric sail force can only partially cancel the Coriolis effect, and the remaining component lays in the spin plane having a cumulative effect on the spin rate.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B34330</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2013-01, Vol.29 (1), p.178-185
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_miscellaneous_1349465258
source Alma/SFX Local Collection
subjects Angular momentum
Attitude control
Coriolis effect
Dynamic pressure
Electric potential
Electron guns
Modulation
Planes
Propulsion systems
Sails
Solar wind
Sun
Tethers
Thrust
Thrust vector control
Voltage
Wind power generation
title Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Plane%20Control%20and%20Thrust%20Vectoring%20of%20Electric%20Solar%20Wind%20Sail&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Toivanen,%20Petri%20K&rft.date=2013-01-01&rft.volume=29&rft.issue=1&rft.spage=178&rft.epage=185&rft.pages=178-185&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.B34330&rft_dat=%3Cproquest_aiaa_%3E2493571861%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365278268&rft_id=info:pmid/&rfr_iscdi=true