Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail
The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately t...
Gespeichert in:
Veröffentlicht in: | Journal of propulsion and power 2013-01, Vol.29 (1), p.178-185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 1 |
container_start_page | 178 |
container_title | Journal of propulsion and power |
container_volume | 29 |
creator | Toivanen, Petri K Janhunen, Pekka |
description | The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately to produce net torque for attitude control and thrust vectoring. A solution for the voltage modulation that maintains any realistic sail angle under constant solar wind is obtained. Together with the adiabatic invariance of the angular momentum, the tether spin rate and coning angle are solved as functions of temporal changes in the solar wind dynamic pressure, the tether length, or the sail angle. The obtained modulation also gives an estimate for the fraction of sail performance (electron gun power) to be reserved for sail control. We also show that orbiting around the sun with a fixed sail angle leads to a gradual increase (decrease) in the sail spin rate when spiraling outward (inward). This effect arises from the fact that the modulation of the electric sail force can only partially cancel the Coriolis effect, and the remaining component lays in the spin plane having a cumulative effect on the spin rate. |
doi_str_mv | 10.2514/1.B34330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349465258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493571861</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-de7cb56047d73241f0a6db61d3d57f425860fc23fc64a48c7bae8b76eec937003</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgCtYq-BMCInjZmu9kj1rqBwgKrXoM2WxWU7abmuwe_PemVFB60FMYeHhnMgPAKUYTwjG7xJNryihFe2CEOaUFVVLsgxGSTBVMcHUIjlJaIoSFEnIEpvO17-BTazoHp6HrY2ih6Wq4eI9D6uGLs32IvnuDoYGzNlfRWzgPrYnw1Wc3N749BgeNaZM7-X7H4PlmtpjeFQ-Pt_fTq4fCMMb7onbSVlwgJmtJCcMNMqKuBK5pzWXDCFcCNZbQxgpmmLKyMk5VUjhnSyoRomNwsc1dx_AxuNTrlU_WtZvhw5A0loJgUirG_6eUlXkbuWemZzt0GYbY5Y9owkrKJVYC_6UwzUFSEaF-2toYUoqu0evoVyZ-aoz05jwa6-15Mj3fUuON-RW2674AAF2JYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365278268</pqid></control><display><type>article</type><title>Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail</title><source>Alma/SFX Local Collection</source><creator>Toivanen, Petri K ; Janhunen, Pekka</creator><creatorcontrib>Toivanen, Petri K ; Janhunen, Pekka</creatorcontrib><description>The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately to produce net torque for attitude control and thrust vectoring. A solution for the voltage modulation that maintains any realistic sail angle under constant solar wind is obtained. Together with the adiabatic invariance of the angular momentum, the tether spin rate and coning angle are solved as functions of temporal changes in the solar wind dynamic pressure, the tether length, or the sail angle. The obtained modulation also gives an estimate for the fraction of sail performance (electron gun power) to be reserved for sail control. We also show that orbiting around the sun with a fixed sail angle leads to a gradual increase (decrease) in the sail spin rate when spiraling outward (inward). This effect arises from the fact that the modulation of the electric sail force can only partially cancel the Coriolis effect, and the remaining component lays in the spin plane having a cumulative effect on the spin rate.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B34330</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Angular momentum ; Attitude control ; Coriolis effect ; Dynamic pressure ; Electric potential ; Electron guns ; Modulation ; Planes ; Propulsion systems ; Sails ; Solar wind ; Sun ; Tethers ; Thrust ; Thrust vector control ; Voltage ; Wind power generation</subject><ispartof>Journal of propulsion and power, 2013-01, Vol.29 (1), p.178-185</ispartof><rights>Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3876/12 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-de7cb56047d73241f0a6db61d3d57f425860fc23fc64a48c7bae8b76eec937003</citedby><cites>FETCH-LOGICAL-a445t-de7cb56047d73241f0a6db61d3d57f425860fc23fc64a48c7bae8b76eec937003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Toivanen, Petri K</creatorcontrib><creatorcontrib>Janhunen, Pekka</creatorcontrib><title>Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail</title><title>Journal of propulsion and power</title><description>The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately to produce net torque for attitude control and thrust vectoring. A solution for the voltage modulation that maintains any realistic sail angle under constant solar wind is obtained. Together with the adiabatic invariance of the angular momentum, the tether spin rate and coning angle are solved as functions of temporal changes in the solar wind dynamic pressure, the tether length, or the sail angle. The obtained modulation also gives an estimate for the fraction of sail performance (electron gun power) to be reserved for sail control. We also show that orbiting around the sun with a fixed sail angle leads to a gradual increase (decrease) in the sail spin rate when spiraling outward (inward). This effect arises from the fact that the modulation of the electric sail force can only partially cancel the Coriolis effect, and the remaining component lays in the spin plane having a cumulative effect on the spin rate.</description><subject>Angular momentum</subject><subject>Attitude control</subject><subject>Coriolis effect</subject><subject>Dynamic pressure</subject><subject>Electric potential</subject><subject>Electron guns</subject><subject>Modulation</subject><subject>Planes</subject><subject>Propulsion systems</subject><subject>Sails</subject><subject>Solar wind</subject><subject>Sun</subject><subject>Tethers</subject><subject>Thrust</subject><subject>Thrust vector control</subject><subject>Voltage</subject><subject>Wind power generation</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LAzEQBuAgCtYq-BMCInjZmu9kj1rqBwgKrXoM2WxWU7abmuwe_PemVFB60FMYeHhnMgPAKUYTwjG7xJNryihFe2CEOaUFVVLsgxGSTBVMcHUIjlJaIoSFEnIEpvO17-BTazoHp6HrY2ih6Wq4eI9D6uGLs32IvnuDoYGzNlfRWzgPrYnw1Wc3N749BgeNaZM7-X7H4PlmtpjeFQ-Pt_fTq4fCMMb7onbSVlwgJmtJCcMNMqKuBK5pzWXDCFcCNZbQxgpmmLKyMk5VUjhnSyoRomNwsc1dx_AxuNTrlU_WtZvhw5A0loJgUirG_6eUlXkbuWemZzt0GYbY5Y9owkrKJVYC_6UwzUFSEaF-2toYUoqu0evoVyZ-aoz05jwa6-15Mj3fUuON-RW2674AAF2JYQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Toivanen, Petri K</creator><creator>Janhunen, Pekka</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20130101</creationdate><title>Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail</title><author>Toivanen, Petri K ; Janhunen, Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-de7cb56047d73241f0a6db61d3d57f425860fc23fc64a48c7bae8b76eec937003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angular momentum</topic><topic>Attitude control</topic><topic>Coriolis effect</topic><topic>Dynamic pressure</topic><topic>Electric potential</topic><topic>Electron guns</topic><topic>Modulation</topic><topic>Planes</topic><topic>Propulsion systems</topic><topic>Sails</topic><topic>Solar wind</topic><topic>Sun</topic><topic>Tethers</topic><topic>Thrust</topic><topic>Thrust vector control</topic><topic>Voltage</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toivanen, Petri K</creatorcontrib><creatorcontrib>Janhunen, Pekka</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toivanen, Petri K</au><au>Janhunen, Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail</atitle><jtitle>Journal of propulsion and power</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>29</volume><issue>1</issue><spage>178</spage><epage>185</epage><pages>178-185</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>The electric solar wind sail is a propulsion system that uses long centrifugally spanned and electrically charged tethers to extract the solar wind momentum for spacecraft thrust. The sail angle with respect to the sun direction can be controlled by modulating the voltage of each tether separately to produce net torque for attitude control and thrust vectoring. A solution for the voltage modulation that maintains any realistic sail angle under constant solar wind is obtained. Together with the adiabatic invariance of the angular momentum, the tether spin rate and coning angle are solved as functions of temporal changes in the solar wind dynamic pressure, the tether length, or the sail angle. The obtained modulation also gives an estimate for the fraction of sail performance (electron gun power) to be reserved for sail control. We also show that orbiting around the sun with a fixed sail angle leads to a gradual increase (decrease) in the sail spin rate when spiraling outward (inward). This effect arises from the fact that the modulation of the electric sail force can only partially cancel the Coriolis effect, and the remaining component lays in the spin plane having a cumulative effect on the spin rate.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B34330</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-4658 |
ispartof | Journal of propulsion and power, 2013-01, Vol.29 (1), p.178-185 |
issn | 0748-4658 1533-3876 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349465258 |
source | Alma/SFX Local Collection |
subjects | Angular momentum Attitude control Coriolis effect Dynamic pressure Electric potential Electron guns Modulation Planes Propulsion systems Sails Solar wind Sun Tethers Thrust Thrust vector control Voltage Wind power generation |
title | Spin Plane Control and Thrust Vectoring of Electric Solar Wind Sail |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Plane%20Control%20and%20Thrust%20Vectoring%20of%20Electric%20Solar%20Wind%20Sail&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Toivanen,%20Petri%20K&rft.date=2013-01-01&rft.volume=29&rft.issue=1&rft.spage=178&rft.epage=185&rft.pages=178-185&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.B34330&rft_dat=%3Cproquest_aiaa_%3E2493571861%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365278268&rft_id=info:pmid/&rfr_iscdi=true |