meSO: simulation optimization using a multicriteria process capability index and evolutionary algorithms

A successful implementation of a simulation-optimization (SO) methodology is presented. Based on evolutionary algorithms with a multicriteria fitness function, the new SO is used to developed weekly schedules at a ship building factory that manufactures around 60 jobs per week. Simulation modeling i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation (San Diego, Calif.) Calif.), 2013-03, Vol.89 (3), p.254-263
1. Verfasser: Otamendi, F Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 3
container_start_page 254
container_title Simulation (San Diego, Calif.)
container_volume 89
creator Otamendi, F Javier
description A successful implementation of a simulation-optimization (SO) methodology is presented. Based on evolutionary algorithms with a multicriteria fitness function, the new SO is used to developed weekly schedules at a ship building factory that manufactures around 60 jobs per week. Simulation modeling is used to account for randomness on the input data, as well as to correctly abstract the complex operations carried out in the real system. A variant of genetic algorithms is used to search for the appropriate schedule. Its fitness function is a multicriteria process capability index that aggregates three individual criteria, namely, makespan, line blockage and idleness of resources. The index is based on the satisfaction of thresholds for each and every criterion, thresholds that are tightened as improved schedules are found. The thresholds are also used to reject non-promising alternatives without having to perform the same number of runs as for the candidates that stand out for implementation. The name of the methodology is meSO: multicriteria evolutionary SO.
doi_str_mv 10.1177/0037549712437598
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349457125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0037549712437598</sage_id><sourcerecordid>1349457125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a4b5dfd93c5ac283a45bea4f51ca7e86ff7ab3cfc7d2fe9409e2ef076f5415e73</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM3pkCdixXTdsqOJLQuoAzNHFObeukrjYCaL89TgKExLT3em93-nuEXLJ2TXnWt8wJrSShea5TE2xPCIzriXPBBfimMxGORv1U3IW444xrrhezMi2xdf1LY2uHRrone-o3_eudd_TMETXbSjQpPbOBNdjcED3wRuMkRrYQ-Ua1x-o62r8otDVFD99M4wwhAOFZuMTtW3jOTmx0ES8-K1z8v5w_7Z6yl7Wj8-ru5fMCC77DGSlalsXwigw-VKAVBWCtIob0LhcWKuhEsYaXecWC8kKzNEyvbBKcoVazMnVtDcd-TFg7MvWRYNNAx36IZZcyEKqFJNKVjZZTfAxBrTlPrg2nV1yVo6hln9DTUg2IRE2WO78ELr0zP_-H6UNelw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349457125</pqid></control><display><type>article</type><title>meSO: simulation optimization using a multicriteria process capability index and evolutionary algorithms</title><source>SAGE Complete A-Z List</source><creator>Otamendi, F Javier</creator><creatorcontrib>Otamendi, F Javier</creatorcontrib><description>A successful implementation of a simulation-optimization (SO) methodology is presented. Based on evolutionary algorithms with a multicriteria fitness function, the new SO is used to developed weekly schedules at a ship building factory that manufactures around 60 jobs per week. Simulation modeling is used to account for randomness on the input data, as well as to correctly abstract the complex operations carried out in the real system. A variant of genetic algorithms is used to search for the appropriate schedule. Its fitness function is a multicriteria process capability index that aggregates three individual criteria, namely, makespan, line blockage and idleness of resources. The index is based on the satisfaction of thresholds for each and every criterion, thresholds that are tightened as improved schedules are found. The thresholds are also used to reject non-promising alternatives without having to perform the same number of runs as for the candidates that stand out for implementation. The name of the methodology is meSO: multicriteria evolutionary SO.</description><identifier>ISSN: 0037-5497</identifier><identifier>EISSN: 1741-3133</identifier><identifier>DOI: 10.1177/0037549712437598</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Computer simulation ; Criteria ; Evolutionary algorithms ; Fitness ; Mathematical models ; Methodology ; Schedules ; Thresholds</subject><ispartof>Simulation (San Diego, Calif.), 2013-03, Vol.89 (3), p.254-263</ispartof><rights>2012 The Society for Modeling and Simulation International</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-a4b5dfd93c5ac283a45bea4f51ca7e86ff7ab3cfc7d2fe9409e2ef076f5415e73</citedby><cites>FETCH-LOGICAL-c314t-a4b5dfd93c5ac283a45bea4f51ca7e86ff7ab3cfc7d2fe9409e2ef076f5415e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0037549712437598$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0037549712437598$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Otamendi, F Javier</creatorcontrib><title>meSO: simulation optimization using a multicriteria process capability index and evolutionary algorithms</title><title>Simulation (San Diego, Calif.)</title><description>A successful implementation of a simulation-optimization (SO) methodology is presented. Based on evolutionary algorithms with a multicriteria fitness function, the new SO is used to developed weekly schedules at a ship building factory that manufactures around 60 jobs per week. Simulation modeling is used to account for randomness on the input data, as well as to correctly abstract the complex operations carried out in the real system. A variant of genetic algorithms is used to search for the appropriate schedule. Its fitness function is a multicriteria process capability index that aggregates three individual criteria, namely, makespan, line blockage and idleness of resources. The index is based on the satisfaction of thresholds for each and every criterion, thresholds that are tightened as improved schedules are found. The thresholds are also used to reject non-promising alternatives without having to perform the same number of runs as for the candidates that stand out for implementation. The name of the methodology is meSO: multicriteria evolutionary SO.</description><subject>Computer simulation</subject><subject>Criteria</subject><subject>Evolutionary algorithms</subject><subject>Fitness</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Schedules</subject><subject>Thresholds</subject><issn>0037-5497</issn><issn>1741-3133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM3pkCdixXTdsqOJLQuoAzNHFObeukrjYCaL89TgKExLT3em93-nuEXLJ2TXnWt8wJrSShea5TE2xPCIzriXPBBfimMxGORv1U3IW444xrrhezMi2xdf1LY2uHRrone-o3_eudd_TMETXbSjQpPbOBNdjcED3wRuMkRrYQ-Ua1x-o62r8otDVFD99M4wwhAOFZuMTtW3jOTmx0ES8-K1z8v5w_7Z6yl7Wj8-ru5fMCC77DGSlalsXwigw-VKAVBWCtIob0LhcWKuhEsYaXecWC8kKzNEyvbBKcoVazMnVtDcd-TFg7MvWRYNNAx36IZZcyEKqFJNKVjZZTfAxBrTlPrg2nV1yVo6hln9DTUg2IRE2WO78ELr0zP_-H6UNelw</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Otamendi, F Javier</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130301</creationdate><title>meSO: simulation optimization using a multicriteria process capability index and evolutionary algorithms</title><author>Otamendi, F Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a4b5dfd93c5ac283a45bea4f51ca7e86ff7ab3cfc7d2fe9409e2ef076f5415e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Criteria</topic><topic>Evolutionary algorithms</topic><topic>Fitness</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Schedules</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otamendi, F Javier</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Simulation (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otamendi, F Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>meSO: simulation optimization using a multicriteria process capability index and evolutionary algorithms</atitle><jtitle>Simulation (San Diego, Calif.)</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>89</volume><issue>3</issue><spage>254</spage><epage>263</epage><pages>254-263</pages><issn>0037-5497</issn><eissn>1741-3133</eissn><abstract>A successful implementation of a simulation-optimization (SO) methodology is presented. Based on evolutionary algorithms with a multicriteria fitness function, the new SO is used to developed weekly schedules at a ship building factory that manufactures around 60 jobs per week. Simulation modeling is used to account for randomness on the input data, as well as to correctly abstract the complex operations carried out in the real system. A variant of genetic algorithms is used to search for the appropriate schedule. Its fitness function is a multicriteria process capability index that aggregates three individual criteria, namely, makespan, line blockage and idleness of resources. The index is based on the satisfaction of thresholds for each and every criterion, thresholds that are tightened as improved schedules are found. The thresholds are also used to reject non-promising alternatives without having to perform the same number of runs as for the candidates that stand out for implementation. The name of the methodology is meSO: multicriteria evolutionary SO.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0037549712437598</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-5497
ispartof Simulation (San Diego, Calif.), 2013-03, Vol.89 (3), p.254-263
issn 0037-5497
1741-3133
language eng
recordid cdi_proquest_miscellaneous_1349457125
source SAGE Complete A-Z List
subjects Computer simulation
Criteria
Evolutionary algorithms
Fitness
Mathematical models
Methodology
Schedules
Thresholds
title meSO: simulation optimization using a multicriteria process capability index and evolutionary algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=meSO:%20simulation%20optimization%20using%20a%20multicriteria%20process%20capability%20index%20and%20evolutionary%20algorithms&rft.jtitle=Simulation%20(San%20Diego,%20Calif.)&rft.au=Otamendi,%20F%20Javier&rft.date=2013-03-01&rft.volume=89&rft.issue=3&rft.spage=254&rft.epage=263&rft.pages=254-263&rft.issn=0037-5497&rft.eissn=1741-3133&rft_id=info:doi/10.1177/0037549712437598&rft_dat=%3Cproquest_cross%3E1349457125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349457125&rft_id=info:pmid/&rft_sage_id=10.1177_0037549712437598&rfr_iscdi=true