Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties
The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2013-03, Vol.24 (10), p.105301-105301 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105301 |
---|---|
container_issue | 10 |
container_start_page | 105301 |
container_title | Nanotechnology |
container_volume | 24 |
creator | Kumar, Golden Blawzdziewicz, Jerzy Schroers, Jan |
description | The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution of nanoimprinted features is determined. For platinum-based BMG the theory that takes into account capillary pressure but no other surface stresses agrees very well with experimental results. For palladium-based BMG (prone to oxidation) the extended theory includes an additional threshold pressure required to break the oxide layer that forms on the BMG surface. Our analysis provides important insights into flow behavior of BMG supercooled liquids. In particular, a new method for measuring surface tension and viscosity of BMGs and evaluating the strength of the surface oxide layer is demonstrated. |
doi_str_mv | 10.1088/0957-4484/24/10/105301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349455679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349455679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-1ffdd85b3bba4847f9c25e2ff5e226ba33c151ffeb9aec942462b29e1707bad93</originalsourceid><addsrcrecordid>eNqNkU1v3CAQhlHUqtkk_QuRL5V6cZYBjO3eqlW_pEi9tNcgwENEhGED9qH_vli7TY-thEBinpl35h1CboHeAR2GPR27vhViEHsm9kDr6TiFC7IDLqGVHRtekd0LdEmuSnmiFGBg8IZcMi5AdrLfkYdDiktOIWgTsIk6Jj8fs4-Lj49Ncs2Miw7B2-Yx6FKwfGjQObTLFjtmLGXN2Og4NTUFs9PW61AD6Yh58VhuyGunQ8G35_ea_Pz86cfha3v__cu3w8f71oqBLy04N01DZ7gxurbbu9GyDplz9WLSaM4tdBVCM2q0o2BCMsNGhJ72Rk8jvybvT3Wr9POKZVGzLxbrWBHTWhRwMYquTvw_KDApgfe0ovKE2pxKyehUtWbW-ZcCqrY1qM1htTmsmDh9bmuoibdnjdXMOL2k_fG9Au_OgC5WB5d1tL785fraA2escuzE-XRUT2nNsbr4L_Xf5UWgBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312661370</pqid></control><display><type>article</type><title>Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kumar, Golden ; Blawzdziewicz, Jerzy ; Schroers, Jan</creator><creatorcontrib>Kumar, Golden ; Blawzdziewicz, Jerzy ; Schroers, Jan</creatorcontrib><description>The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution of nanoimprinted features is determined. For platinum-based BMG the theory that takes into account capillary pressure but no other surface stresses agrees very well with experimental results. For palladium-based BMG (prone to oxidation) the extended theory includes an additional threshold pressure required to break the oxide layer that forms on the BMG surface. Our analysis provides important insights into flow behavior of BMG supercooled liquids. In particular, a new method for measuring surface tension and viscosity of BMGs and evaluating the strength of the surface oxide layer is demonstrated.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/24/10/105301</identifier><identifier>PMID: 23416567</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amorphous materials ; Capillary pressure ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusive momentum transport (including viscosity of liquids) ; Exact sciences and technology ; Fluid surfaces and fluid-fluid interfaces ; Materials science ; Methods of nanofabrication ; Nanocomposites ; Nanolithography ; Nanomaterials ; Nanostructure ; Oxides ; Physics ; Surface energy (surface tension, interface tension, angle of contact, etc.) ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermoplastic resins ; Transport properties of condensed matter (nonelectronic) ; Viscosity</subject><ispartof>Nanotechnology, 2013-03, Vol.24 (10), p.105301-105301</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-1ffdd85b3bba4847f9c25e2ff5e226ba33c151ffeb9aec942462b29e1707bad93</citedby><cites>FETCH-LOGICAL-c483t-1ffdd85b3bba4847f9c25e2ff5e226ba33c151ffeb9aec942462b29e1707bad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/24/10/105301/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27126322$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23416567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Golden</creatorcontrib><creatorcontrib>Blawzdziewicz, Jerzy</creatorcontrib><creatorcontrib>Schroers, Jan</creatorcontrib><title>Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution of nanoimprinted features is determined. For platinum-based BMG the theory that takes into account capillary pressure but no other surface stresses agrees very well with experimental results. For palladium-based BMG (prone to oxidation) the extended theory includes an additional threshold pressure required to break the oxide layer that forms on the BMG surface. Our analysis provides important insights into flow behavior of BMG supercooled liquids. In particular, a new method for measuring surface tension and viscosity of BMGs and evaluating the strength of the surface oxide layer is demonstrated.</description><subject>Amorphous materials</subject><subject>Capillary pressure</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusive momentum transport (including viscosity of liquids)</subject><subject>Exact sciences and technology</subject><subject>Fluid surfaces and fluid-fluid interfaces</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocomposites</subject><subject>Nanolithography</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Oxides</subject><subject>Physics</subject><subject>Surface energy (surface tension, interface tension, angle of contact, etc.)</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermoplastic resins</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>Viscosity</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v3CAQhlHUqtkk_QuRL5V6cZYBjO3eqlW_pEi9tNcgwENEhGED9qH_vli7TY-thEBinpl35h1CboHeAR2GPR27vhViEHsm9kDr6TiFC7IDLqGVHRtekd0LdEmuSnmiFGBg8IZcMi5AdrLfkYdDiktOIWgTsIk6Jj8fs4-Lj49Ncs2Miw7B2-Yx6FKwfGjQObTLFjtmLGXN2Og4NTUFs9PW61AD6Yh58VhuyGunQ8G35_ea_Pz86cfha3v__cu3w8f71oqBLy04N01DZ7gxurbbu9GyDplz9WLSaM4tdBVCM2q0o2BCMsNGhJ72Rk8jvybvT3Wr9POKZVGzLxbrWBHTWhRwMYquTvw_KDApgfe0ovKE2pxKyehUtWbW-ZcCqrY1qM1htTmsmDh9bmuoibdnjdXMOL2k_fG9Au_OgC5WB5d1tL785fraA2escuzE-XRUT2nNsbr4L_Xf5UWgBQ</recordid><startdate>20130315</startdate><enddate>20130315</enddate><creator>Kumar, Golden</creator><creator>Blawzdziewicz, Jerzy</creator><creator>Schroers, Jan</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130315</creationdate><title>Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties</title><author>Kumar, Golden ; Blawzdziewicz, Jerzy ; Schroers, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-1ffdd85b3bba4847f9c25e2ff5e226ba33c151ffeb9aec942462b29e1707bad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphous materials</topic><topic>Capillary pressure</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusive momentum transport (including viscosity of liquids)</topic><topic>Exact sciences and technology</topic><topic>Fluid surfaces and fluid-fluid interfaces</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocomposites</topic><topic>Nanolithography</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Oxides</topic><topic>Physics</topic><topic>Surface energy (surface tension, interface tension, angle of contact, etc.)</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermoplastic resins</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Golden</creatorcontrib><creatorcontrib>Blawzdziewicz, Jerzy</creatorcontrib><creatorcontrib>Schroers, Jan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Golden</au><au>Blawzdziewicz, Jerzy</au><au>Schroers, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2013-03-15</date><risdate>2013</risdate><volume>24</volume><issue>10</issue><spage>105301</spage><epage>105301</epage><pages>105301-105301</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution of nanoimprinted features is determined. For platinum-based BMG the theory that takes into account capillary pressure but no other surface stresses agrees very well with experimental results. For palladium-based BMG (prone to oxidation) the extended theory includes an additional threshold pressure required to break the oxide layer that forms on the BMG surface. Our analysis provides important insights into flow behavior of BMG supercooled liquids. In particular, a new method for measuring surface tension and viscosity of BMGs and evaluating the strength of the surface oxide layer is demonstrated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>23416567</pmid><doi>10.1088/0957-4484/24/10/105301</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2013-03, Vol.24 (10), p.105301-105301 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349455679 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Amorphous materials Capillary pressure Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Diffusive momentum transport (including viscosity of liquids) Exact sciences and technology Fluid surfaces and fluid-fluid interfaces Materials science Methods of nanofabrication Nanocomposites Nanolithography Nanomaterials Nanostructure Oxides Physics Surface energy (surface tension, interface tension, angle of contact, etc.) Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thermoplastic resins Transport properties of condensed matter (nonelectronic) Viscosity |
title | Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20nanoimprinting%20of%20metallic%20glasses:%20effect%20of%20pressure%20and%20interfacial%20properties&rft.jtitle=Nanotechnology&rft.au=Kumar,%20Golden&rft.date=2013-03-15&rft.volume=24&rft.issue=10&rft.spage=105301&rft.epage=105301&rft.pages=105301-105301&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/24/10/105301&rft_dat=%3Cproquest_pasca%3E1349455679%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312661370&rft_id=info:pmid/23416567&rfr_iscdi=true |