Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties

The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2013-03, Vol.24 (10), p.105301-105301
Hauptverfasser: Kumar, Golden, Blawzdziewicz, Jerzy, Schroers, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105301
container_issue 10
container_start_page 105301
container_title Nanotechnology
container_volume 24
creator Kumar, Golden
Blawzdziewicz, Jerzy
Schroers, Jan
description The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution of nanoimprinted features is determined. For platinum-based BMG the theory that takes into account capillary pressure but no other surface stresses agrees very well with experimental results. For palladium-based BMG (prone to oxidation) the extended theory includes an additional threshold pressure required to break the oxide layer that forms on the BMG surface. Our analysis provides important insights into flow behavior of BMG supercooled liquids. In particular, a new method for measuring surface tension and viscosity of BMGs and evaluating the strength of the surface oxide layer is demonstrated.
doi_str_mv 10.1088/0957-4484/24/10/105301
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349455679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349455679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-1ffdd85b3bba4847f9c25e2ff5e226ba33c151ffeb9aec942462b29e1707bad93</originalsourceid><addsrcrecordid>eNqNkU1v3CAQhlHUqtkk_QuRL5V6cZYBjO3eqlW_pEi9tNcgwENEhGED9qH_vli7TY-thEBinpl35h1CboHeAR2GPR27vhViEHsm9kDr6TiFC7IDLqGVHRtekd0LdEmuSnmiFGBg8IZcMi5AdrLfkYdDiktOIWgTsIk6Jj8fs4-Lj49Ncs2Miw7B2-Yx6FKwfGjQObTLFjtmLGXN2Og4NTUFs9PW61AD6Yh58VhuyGunQ8G35_ea_Pz86cfha3v__cu3w8f71oqBLy04N01DZ7gxurbbu9GyDplz9WLSaM4tdBVCM2q0o2BCMsNGhJ72Rk8jvybvT3Wr9POKZVGzLxbrWBHTWhRwMYquTvw_KDApgfe0ovKE2pxKyehUtWbW-ZcCqrY1qM1htTmsmDh9bmuoibdnjdXMOL2k_fG9Au_OgC5WB5d1tL785fraA2escuzE-XRUT2nNsbr4L_Xf5UWgBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1312661370</pqid></control><display><type>article</type><title>Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kumar, Golden ; Blawzdziewicz, Jerzy ; Schroers, Jan</creator><creatorcontrib>Kumar, Golden ; Blawzdziewicz, Jerzy ; Schroers, Jan</creatorcontrib><description>The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution of nanoimprinted features is determined. For platinum-based BMG the theory that takes into account capillary pressure but no other surface stresses agrees very well with experimental results. For palladium-based BMG (prone to oxidation) the extended theory includes an additional threshold pressure required to break the oxide layer that forms on the BMG surface. Our analysis provides important insights into flow behavior of BMG supercooled liquids. In particular, a new method for measuring surface tension and viscosity of BMGs and evaluating the strength of the surface oxide layer is demonstrated.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/24/10/105301</identifier><identifier>PMID: 23416567</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Amorphous materials ; Capillary pressure ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diffusive momentum transport (including viscosity of liquids) ; Exact sciences and technology ; Fluid surfaces and fluid-fluid interfaces ; Materials science ; Methods of nanofabrication ; Nanocomposites ; Nanolithography ; Nanomaterials ; Nanostructure ; Oxides ; Physics ; Surface energy (surface tension, interface tension, angle of contact, etc.) ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermoplastic resins ; Transport properties of condensed matter (nonelectronic) ; Viscosity</subject><ispartof>Nanotechnology, 2013-03, Vol.24 (10), p.105301-105301</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-1ffdd85b3bba4847f9c25e2ff5e226ba33c151ffeb9aec942462b29e1707bad93</citedby><cites>FETCH-LOGICAL-c483t-1ffdd85b3bba4847f9c25e2ff5e226ba33c151ffeb9aec942462b29e1707bad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/24/10/105301/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844,53891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27126322$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23416567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Golden</creatorcontrib><creatorcontrib>Blawzdziewicz, Jerzy</creatorcontrib><creatorcontrib>Schroers, Jan</creatorcontrib><title>Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution of nanoimprinted features is determined. For platinum-based BMG the theory that takes into account capillary pressure but no other surface stresses agrees very well with experimental results. For palladium-based BMG (prone to oxidation) the extended theory includes an additional threshold pressure required to break the oxide layer that forms on the BMG surface. Our analysis provides important insights into flow behavior of BMG supercooled liquids. In particular, a new method for measuring surface tension and viscosity of BMGs and evaluating the strength of the surface oxide layer is demonstrated.</description><subject>Amorphous materials</subject><subject>Capillary pressure</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diffusive momentum transport (including viscosity of liquids)</subject><subject>Exact sciences and technology</subject><subject>Fluid surfaces and fluid-fluid interfaces</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocomposites</subject><subject>Nanolithography</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Oxides</subject><subject>Physics</subject><subject>Surface energy (surface tension, interface tension, angle of contact, etc.)</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermoplastic resins</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><subject>Viscosity</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v3CAQhlHUqtkk_QuRL5V6cZYBjO3eqlW_pEi9tNcgwENEhGED9qH_vli7TY-thEBinpl35h1CboHeAR2GPR27vhViEHsm9kDr6TiFC7IDLqGVHRtekd0LdEmuSnmiFGBg8IZcMi5AdrLfkYdDiktOIWgTsIk6Jj8fs4-Lj49Ncs2Miw7B2-Yx6FKwfGjQObTLFjtmLGXN2Og4NTUFs9PW61AD6Yh58VhuyGunQ8G35_ea_Pz86cfha3v__cu3w8f71oqBLy04N01DZ7gxurbbu9GyDplz9WLSaM4tdBVCM2q0o2BCMsNGhJ72Rk8jvybvT3Wr9POKZVGzLxbrWBHTWhRwMYquTvw_KDApgfe0ovKE2pxKyehUtWbW-ZcCqrY1qM1htTmsmDh9bmuoibdnjdXMOL2k_fG9Au_OgC5WB5d1tL785fraA2escuzE-XRUT2nNsbr4L_Xf5UWgBQ</recordid><startdate>20130315</startdate><enddate>20130315</enddate><creator>Kumar, Golden</creator><creator>Blawzdziewicz, Jerzy</creator><creator>Schroers, Jan</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130315</creationdate><title>Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties</title><author>Kumar, Golden ; Blawzdziewicz, Jerzy ; Schroers, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-1ffdd85b3bba4847f9c25e2ff5e226ba33c151ffeb9aec942462b29e1707bad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphous materials</topic><topic>Capillary pressure</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diffusive momentum transport (including viscosity of liquids)</topic><topic>Exact sciences and technology</topic><topic>Fluid surfaces and fluid-fluid interfaces</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocomposites</topic><topic>Nanolithography</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Oxides</topic><topic>Physics</topic><topic>Surface energy (surface tension, interface tension, angle of contact, etc.)</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermoplastic resins</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Golden</creatorcontrib><creatorcontrib>Blawzdziewicz, Jerzy</creatorcontrib><creatorcontrib>Schroers, Jan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Golden</au><au>Blawzdziewicz, Jerzy</au><au>Schroers, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2013-03-15</date><risdate>2013</risdate><volume>24</volume><issue>10</issue><spage>105301</spage><epage>105301</epage><pages>105301-105301</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution of nanoimprinted features is determined. For platinum-based BMG the theory that takes into account capillary pressure but no other surface stresses agrees very well with experimental results. For palladium-based BMG (prone to oxidation) the extended theory includes an additional threshold pressure required to break the oxide layer that forms on the BMG surface. Our analysis provides important insights into flow behavior of BMG supercooled liquids. In particular, a new method for measuring surface tension and viscosity of BMGs and evaluating the strength of the surface oxide layer is demonstrated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>23416567</pmid><doi>10.1088/0957-4484/24/10/105301</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2013-03, Vol.24 (10), p.105301-105301
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_1349455679
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Amorphous materials
Capillary pressure
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Diffusive momentum transport (including viscosity of liquids)
Exact sciences and technology
Fluid surfaces and fluid-fluid interfaces
Materials science
Methods of nanofabrication
Nanocomposites
Nanolithography
Nanomaterials
Nanostructure
Oxides
Physics
Surface energy (surface tension, interface tension, angle of contact, etc.)
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thermoplastic resins
Transport properties of condensed matter (nonelectronic)
Viscosity
title Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20nanoimprinting%20of%20metallic%20glasses:%20effect%20of%20pressure%20and%20interfacial%20properties&rft.jtitle=Nanotechnology&rft.au=Kumar,%20Golden&rft.date=2013-03-15&rft.volume=24&rft.issue=10&rft.spage=105301&rft.epage=105301&rft.pages=105301-105301&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/24/10/105301&rft_dat=%3Cproquest_pasca%3E1349455679%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1312661370&rft_id=info:pmid/23416567&rfr_iscdi=true