Optical imaging of the spontaneous depolarization wave in the mouse embryo: origins and pharmacological nature

Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage‐sensitive dye, we revealed previously in the chick and rat embryos that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2013-03, Vol.1279 (1), p.60-70
Hauptverfasser: Momose-Sato, Yoko, Sato, Katsushige
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 60
container_title Annals of the New York Academy of Sciences
container_volume 1279
creator Momose-Sato, Yoko
Sato, Katsushige
description Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage‐sensitive dye, we revealed previously in the chick and rat embryos that this correlated activity is a widely propagating wave of neural depolarization, which we termed the depolarization wave. One important consideration is whether a depolarization wave with similar characteristics occurs in other species, especially in different mammals. Here, we provide evidence for the existence of the depolarization wave in the mouse embryo by summarizing spatiotemporal characteristics and pharmacological natures of the widely propagating wave activity. The findings show that a synchronized wave with common characteristics is expressed in different species, suggesting its fundamental roles in neural development.
doi_str_mv 10.1111/j.1749-6632.2012.06806.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349450139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349450139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5356-92d2b3e87c2d6308189bb1ec51b0df337554983c679261eb58da2677595131993</originalsourceid><addsrcrecordid>eNqNkUtv1DAURi0EotOBv4AssWGT4Ef8YoFUVdCCqumCRwUby0k8Uw9JHOyEzvTX40zKLFjVG1u6537WvQcAiFGO03m7zbEoVMY5JTlBmOSIS8Tz3ROwOBaeggVCQmRSEXoCTmPcokTKQjwHJ4QyihGiC9Bd94OrTANdazau20C_hsOthbH33WA668cIa9v7xgR3bwbnO3hn_ljougPWprqFti3D3r-DPriUEaHpatjfmtCayjd-c8jvzDAG-wI8W5sm2pcP9xJ8-_jh6_lldnV98en87CqrGGU8U6QmJbVSVKTmFEksVVliWzFconpNqWCsUJJWXCjCsS2ZrA3hQjDFMMVK0SV4M-f2wf8ebRx062Jlm2YeSWNaqIIhTB-DEkxpgdK6luD1f-jWj6FLgxyoQiYJNFFypqrgYwx2rfuQthv2GiM96dNbPVnSkyU96dMHfXqXWl89fDCWra2Pjf98JeD9DNy5xu4fHaxXP86-TM8UkM0BLg52dwww4ZfmIu1V36wu9A1B5Pvlz5X-TP8CcGy3Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321488063</pqid></control><display><type>article</type><title>Optical imaging of the spontaneous depolarization wave in the mouse embryo: origins and pharmacological nature</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Momose-Sato, Yoko ; Sato, Katsushige</creator><creatorcontrib>Momose-Sato, Yoko ; Sato, Katsushige</creatorcontrib><description>Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage‐sensitive dye, we revealed previously in the chick and rat embryos that this correlated activity is a widely propagating wave of neural depolarization, which we termed the depolarization wave. One important consideration is whether a depolarization wave with similar characteristics occurs in other species, especially in different mammals. Here, we provide evidence for the existence of the depolarization wave in the mouse embryo by summarizing spatiotemporal characteristics and pharmacological natures of the widely propagating wave activity. The findings show that a synchronized wave with common characteristics is expressed in different species, suggesting its fundamental roles in neural development.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2012.06806.x</identifier><identifier>PMID: 23531003</identifier><identifier>CODEN: ANYAA9</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Brain - drug effects ; Brain - embryology ; Brain - physiology ; Brain Mapping - methods ; Correlation ; Depolarization ; depolarization wave ; development ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - drug effects ; Embryo, Nonmammalian - physiology ; Embryos ; Humans ; Imaging ; Mammals ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Mice ; Models, Biological ; Movements ; Neural Pathways - drug effects ; Neural Pathways - embryology ; Neurogenesis - physiology ; Neurotransmitter Agents - metabolism ; Neurotransmitter Agents - pharmacology ; Optical Imaging - methods ; optical recording ; Rats ; Spinal Cord - drug effects ; Spinal Cord - embryology ; Spinal Cord - physiology ; Spontaneous ; spontaneous activity ; voltage-sensitive dye ; Wave propagation</subject><ispartof>Annals of the New York Academy of Sciences, 2013-03, Vol.1279 (1), p.60-70</ispartof><rights>2013 New York Academy of Sciences.</rights><rights>2013 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5356-92d2b3e87c2d6308189bb1ec51b0df337554983c679261eb58da2677595131993</citedby><cites>FETCH-LOGICAL-c5356-92d2b3e87c2d6308189bb1ec51b0df337554983c679261eb58da2677595131993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1749-6632.2012.06806.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1749-6632.2012.06806.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23531003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Momose-Sato, Yoko</creatorcontrib><creatorcontrib>Sato, Katsushige</creatorcontrib><title>Optical imaging of the spontaneous depolarization wave in the mouse embryo: origins and pharmacological nature</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann. N.Y. Acad. Sci</addtitle><description>Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage‐sensitive dye, we revealed previously in the chick and rat embryos that this correlated activity is a widely propagating wave of neural depolarization, which we termed the depolarization wave. One important consideration is whether a depolarization wave with similar characteristics occurs in other species, especially in different mammals. Here, we provide evidence for the existence of the depolarization wave in the mouse embryo by summarizing spatiotemporal characteristics and pharmacological natures of the widely propagating wave activity. The findings show that a synchronized wave with common characteristics is expressed in different species, suggesting its fundamental roles in neural development.</description><subject>Animals</subject><subject>Brain - drug effects</subject><subject>Brain - embryology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Correlation</subject><subject>Depolarization</subject><subject>depolarization wave</subject><subject>development</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - drug effects</subject><subject>Embryo, Nonmammalian - physiology</subject><subject>Embryos</subject><subject>Humans</subject><subject>Imaging</subject><subject>Mammals</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Movements</subject><subject>Neural Pathways - drug effects</subject><subject>Neural Pathways - embryology</subject><subject>Neurogenesis - physiology</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Neurotransmitter Agents - pharmacology</subject><subject>Optical Imaging - methods</subject><subject>optical recording</subject><subject>Rats</subject><subject>Spinal Cord - drug effects</subject><subject>Spinal Cord - embryology</subject><subject>Spinal Cord - physiology</subject><subject>Spontaneous</subject><subject>spontaneous activity</subject><subject>voltage-sensitive dye</subject><subject>Wave propagation</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAURi0EotOBv4AssWGT4Ef8YoFUVdCCqumCRwUby0k8Uw9JHOyEzvTX40zKLFjVG1u6537WvQcAiFGO03m7zbEoVMY5JTlBmOSIS8Tz3ROwOBaeggVCQmRSEXoCTmPcokTKQjwHJ4QyihGiC9Bd94OrTANdazau20C_hsOthbH33WA668cIa9v7xgR3bwbnO3hn_ljougPWprqFti3D3r-DPriUEaHpatjfmtCayjd-c8jvzDAG-wI8W5sm2pcP9xJ8-_jh6_lldnV98en87CqrGGU8U6QmJbVSVKTmFEksVVliWzFconpNqWCsUJJWXCjCsS2ZrA3hQjDFMMVK0SV4M-f2wf8ebRx062Jlm2YeSWNaqIIhTB-DEkxpgdK6luD1f-jWj6FLgxyoQiYJNFFypqrgYwx2rfuQthv2GiM96dNbPVnSkyU96dMHfXqXWl89fDCWra2Pjf98JeD9DNy5xu4fHaxXP86-TM8UkM0BLg52dwww4ZfmIu1V36wu9A1B5Pvlz5X-TP8CcGy3Gw</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Momose-Sato, Yoko</creator><creator>Sato, Katsushige</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201303</creationdate><title>Optical imaging of the spontaneous depolarization wave in the mouse embryo: origins and pharmacological nature</title><author>Momose-Sato, Yoko ; Sato, Katsushige</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5356-92d2b3e87c2d6308189bb1ec51b0df337554983c679261eb58da2677595131993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Brain - drug effects</topic><topic>Brain - embryology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Correlation</topic><topic>Depolarization</topic><topic>depolarization wave</topic><topic>development</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - drug effects</topic><topic>Embryo, Nonmammalian - physiology</topic><topic>Embryos</topic><topic>Humans</topic><topic>Imaging</topic><topic>Mammals</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Movements</topic><topic>Neural Pathways - drug effects</topic><topic>Neural Pathways - embryology</topic><topic>Neurogenesis - physiology</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Neurotransmitter Agents - pharmacology</topic><topic>Optical Imaging - methods</topic><topic>optical recording</topic><topic>Rats</topic><topic>Spinal Cord - drug effects</topic><topic>Spinal Cord - embryology</topic><topic>Spinal Cord - physiology</topic><topic>Spontaneous</topic><topic>spontaneous activity</topic><topic>voltage-sensitive dye</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Momose-Sato, Yoko</creatorcontrib><creatorcontrib>Sato, Katsushige</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Momose-Sato, Yoko</au><au>Sato, Katsushige</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical imaging of the spontaneous depolarization wave in the mouse embryo: origins and pharmacological nature</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann. N.Y. Acad. Sci</addtitle><date>2013-03</date><risdate>2013</risdate><volume>1279</volume><issue>1</issue><spage>60</spage><epage>70</epage><pages>60-70</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><coden>ANYAA9</coden><abstract>Spontaneous embryonic movements, called embryonic motility, are produced by correlated spontaneous activity in the cranial and spinal nerves, which is driven by brainstem and spinal networks. Using optical imaging with a voltage‐sensitive dye, we revealed previously in the chick and rat embryos that this correlated activity is a widely propagating wave of neural depolarization, which we termed the depolarization wave. One important consideration is whether a depolarization wave with similar characteristics occurs in other species, especially in different mammals. Here, we provide evidence for the existence of the depolarization wave in the mouse embryo by summarizing spatiotemporal characteristics and pharmacological natures of the widely propagating wave activity. The findings show that a synchronized wave with common characteristics is expressed in different species, suggesting its fundamental roles in neural development.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23531003</pmid><doi>10.1111/j.1749-6632.2012.06806.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2013-03, Vol.1279 (1), p.60-70
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_1349450139
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Brain - drug effects
Brain - embryology
Brain - physiology
Brain Mapping - methods
Correlation
Depolarization
depolarization wave
development
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - drug effects
Embryo, Nonmammalian - physiology
Embryos
Humans
Imaging
Mammals
Membrane Potentials - drug effects
Membrane Potentials - physiology
Mice
Models, Biological
Movements
Neural Pathways - drug effects
Neural Pathways - embryology
Neurogenesis - physiology
Neurotransmitter Agents - metabolism
Neurotransmitter Agents - pharmacology
Optical Imaging - methods
optical recording
Rats
Spinal Cord - drug effects
Spinal Cord - embryology
Spinal Cord - physiology
Spontaneous
spontaneous activity
voltage-sensitive dye
Wave propagation
title Optical imaging of the spontaneous depolarization wave in the mouse embryo: origins and pharmacological nature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20imaging%20of%20the%20spontaneous%20depolarization%20wave%20in%20the%20mouse%20embryo:%20origins%20and%20pharmacological%20nature&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Momose-Sato,%20Yoko&rft.date=2013-03&rft.volume=1279&rft.issue=1&rft.spage=60&rft.epage=70&rft.pages=60-70&rft.issn=0077-8923&rft.eissn=1749-6632&rft.coden=ANYAA9&rft_id=info:doi/10.1111/j.1749-6632.2012.06806.x&rft_dat=%3Cproquest_cross%3E1349450139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1321488063&rft_id=info:pmid/23531003&rfr_iscdi=true