Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane
A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR...
Gespeichert in:
Veröffentlicht in: | Polymers & polymer composites 2013, Vol.21 (1), p.37-42 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Polymers & polymer composites |
container_volume | 21 |
creator | Yang, Benhong Li, Meng Wu, Yun Wan, Xingliang |
description | A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR) were employed to characterize the structures of the HO–POSS/PMMA nanocomposites. Scanning electron microscope (SEM) images showed that the as-prepared composite films were smooth, and no severe aggregation of HO–POSS was observed when POSS content was less than 1.0 wt.%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the incorporation of small amount of nanosized HO–POSS reinforced the thermal stability of PMMA. When 1.0 wt.% of HO–POSS was incorporated into PMMA matrix, the T g and T d increased by 28.8 °C and 18.9 °C, respectively, due to the strong interaction between POSS cages and PMMA chains. However, higher POSS contents (>2.0 wt.%) deteriorated the thermal and mechanical properties of the nanocomposites owing to the phase separation in the composite matrix caused by the aggregation of POSS cages. |
doi_str_mv | 10.1177/096739111302100105 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349449685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A318493324</galeid><sourcerecordid>A318493324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-c9ade7cc6dc6fa50562b59e0e5476eb3a630894fbf5266f2f185fd21c092c2a93</originalsourceid><addsrcrecordid>eNplkV9rFDEUxQex4Nr6BXwaEKF9mJo_k8zksZRWC5WK1ufh7p2bbkom2Saz4uKXN8NWH5QELjn8zuWQU1VvOTvnvOs-MKM7aTjnkgnOGGfqRbXibdc3osgvq9UCNAvxqnqd8yMrmNZqVf2631CawNcQxvoz4QaCw_L8Si7YmJAmCnMdbf0l-v3pRPNm7-tlAKa9h5nO6h8O6puAMW1jgtnF8Aff0JjKqjvvHuJEyWH9zflM-Wnn4k8IdFIdWSjCm-d5XH2_vrq__NTc3n28uby4bVB23dyggZE6RD2itqCY0mKtDDFSbadpLUFL1pvWrq0SWlthea_sKDgyI1CAkcfV6WHvNsWnHeV5mFxG8r5kiLs8cNmatjW6VwV99w_6GHcplHQDF73W5QpZqPMD9QCehuWj5gRYzkiTwxjIuqJfSN63RkrRFoM4GDDFnBPZYZvcBGk_cDYsBQ7_F1hM75-zQC6V2AQBXf7rFLo3RgsufwN8EJun</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286686623</pqid></control><display><type>article</type><title>Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane</title><source>Sage Journals GOLD Open Access 2024</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Benhong ; Li, Meng ; Wu, Yun ; Wan, Xingliang</creator><creatorcontrib>Yang, Benhong ; Li, Meng ; Wu, Yun ; Wan, Xingliang</creatorcontrib><description>A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR) were employed to characterize the structures of the HO–POSS/PMMA nanocomposites. Scanning electron microscope (SEM) images showed that the as-prepared composite films were smooth, and no severe aggregation of HO–POSS was observed when POSS content was less than 1.0 wt.%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the incorporation of small amount of nanosized HO–POSS reinforced the thermal stability of PMMA. When 1.0 wt.% of HO–POSS was incorporated into PMMA matrix, the T g and T d increased by 28.8 °C and 18.9 °C, respectively, due to the strong interaction between POSS cages and PMMA chains. However, higher POSS contents (>2.0 wt.%) deteriorated the thermal and mechanical properties of the nanocomposites owing to the phase separation in the composite matrix caused by the aggregation of POSS cages.</description><identifier>ISSN: 0967-3911</identifier><identifier>EISSN: 1478-2391</identifier><identifier>DOI: 10.1177/096739111302100105</identifier><language>eng</language><publisher>Shrewsbury: Rapra</publisher><subject>Agglomeration ; Applied sciences ; Cages ; Composites ; Differential scanning calorimetry ; Exact sciences and technology ; Forms of application and semi-finished materials ; Materials science ; Mechanical properties ; Nanocomposites ; Nanostructure ; Polymer industry, paints, wood ; Polymer matrix composites ; Polymethyl methacrylates ; Polymethylmethacrylate ; Scanning electron microscopy ; Siloxanes ; Strength of materials ; Technology of polymers ; Thermal properties</subject><ispartof>Polymers & polymer composites, 2013, Vol.21 (1), p.37-42</ispartof><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Sage Publications Ltd. (UK)</rights><rights>Copyright Smithers Rapra Technology Limited 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-c9ade7cc6dc6fa50562b59e0e5476eb3a630894fbf5266f2f185fd21c092c2a93</citedby><cites>FETCH-LOGICAL-c377t-c9ade7cc6dc6fa50562b59e0e5476eb3a630894fbf5266f2f185fd21c092c2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26899621$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Benhong</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wu, Yun</creatorcontrib><creatorcontrib>Wan, Xingliang</creatorcontrib><title>Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane</title><title>Polymers & polymer composites</title><description>A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR) were employed to characterize the structures of the HO–POSS/PMMA nanocomposites. Scanning electron microscope (SEM) images showed that the as-prepared composite films were smooth, and no severe aggregation of HO–POSS was observed when POSS content was less than 1.0 wt.%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the incorporation of small amount of nanosized HO–POSS reinforced the thermal stability of PMMA. When 1.0 wt.% of HO–POSS was incorporated into PMMA matrix, the T g and T d increased by 28.8 °C and 18.9 °C, respectively, due to the strong interaction between POSS cages and PMMA chains. However, higher POSS contents (>2.0 wt.%) deteriorated the thermal and mechanical properties of the nanocomposites owing to the phase separation in the composite matrix caused by the aggregation of POSS cages.</description><subject>Agglomeration</subject><subject>Applied sciences</subject><subject>Cages</subject><subject>Composites</subject><subject>Differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer matrix composites</subject><subject>Polymethyl methacrylates</subject><subject>Polymethylmethacrylate</subject><subject>Scanning electron microscopy</subject><subject>Siloxanes</subject><subject>Strength of materials</subject><subject>Technology of polymers</subject><subject>Thermal properties</subject><issn>0967-3911</issn><issn>1478-2391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkV9rFDEUxQex4Nr6BXwaEKF9mJo_k8zksZRWC5WK1ufh7p2bbkom2Saz4uKXN8NWH5QELjn8zuWQU1VvOTvnvOs-MKM7aTjnkgnOGGfqRbXibdc3osgvq9UCNAvxqnqd8yMrmNZqVf2631CawNcQxvoz4QaCw_L8Si7YmJAmCnMdbf0l-v3pRPNm7-tlAKa9h5nO6h8O6puAMW1jgtnF8Aff0JjKqjvvHuJEyWH9zflM-Wnn4k8IdFIdWSjCm-d5XH2_vrq__NTc3n28uby4bVB23dyggZE6RD2itqCY0mKtDDFSbadpLUFL1pvWrq0SWlthea_sKDgyI1CAkcfV6WHvNsWnHeV5mFxG8r5kiLs8cNmatjW6VwV99w_6GHcplHQDF73W5QpZqPMD9QCehuWj5gRYzkiTwxjIuqJfSN63RkrRFoM4GDDFnBPZYZvcBGk_cDYsBQ7_F1hM75-zQC6V2AQBXf7rFLo3RgsufwN8EJun</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Yang, Benhong</creator><creator>Li, Meng</creator><creator>Wu, Yun</creator><creator>Wan, Xingliang</creator><general>Rapra</general><general>Sage Publications Ltd. (UK)</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2013</creationdate><title>Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane</title><author>Yang, Benhong ; Li, Meng ; Wu, Yun ; Wan, Xingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-c9ade7cc6dc6fa50562b59e0e5476eb3a630894fbf5266f2f185fd21c092c2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agglomeration</topic><topic>Applied sciences</topic><topic>Cages</topic><topic>Composites</topic><topic>Differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer matrix composites</topic><topic>Polymethyl methacrylates</topic><topic>Polymethylmethacrylate</topic><topic>Scanning electron microscopy</topic><topic>Siloxanes</topic><topic>Strength of materials</topic><topic>Technology of polymers</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Benhong</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wu, Yun</creatorcontrib><creatorcontrib>Wan, Xingliang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK & Ireland Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Polymers & polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Benhong</au><au>Li, Meng</au><au>Wu, Yun</au><au>Wan, Xingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane</atitle><jtitle>Polymers & polymer composites</jtitle><date>2013</date><risdate>2013</risdate><volume>21</volume><issue>1</issue><spage>37</spage><epage>42</epage><pages>37-42</pages><issn>0967-3911</issn><eissn>1478-2391</eissn><abstract>A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR) were employed to characterize the structures of the HO–POSS/PMMA nanocomposites. Scanning electron microscope (SEM) images showed that the as-prepared composite films were smooth, and no severe aggregation of HO–POSS was observed when POSS content was less than 1.0 wt.%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the incorporation of small amount of nanosized HO–POSS reinforced the thermal stability of PMMA. When 1.0 wt.% of HO–POSS was incorporated into PMMA matrix, the T g and T d increased by 28.8 °C and 18.9 °C, respectively, due to the strong interaction between POSS cages and PMMA chains. However, higher POSS contents (>2.0 wt.%) deteriorated the thermal and mechanical properties of the nanocomposites owing to the phase separation in the composite matrix caused by the aggregation of POSS cages.</abstract><cop>Shrewsbury</cop><pub>Rapra</pub><doi>10.1177/096739111302100105</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-3911 |
ispartof | Polymers & polymer composites, 2013, Vol.21 (1), p.37-42 |
issn | 0967-3911 1478-2391 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349449685 |
source | Sage Journals GOLD Open Access 2024; EZB-FREE-00999 freely available EZB journals |
subjects | Agglomeration Applied sciences Cages Composites Differential scanning calorimetry Exact sciences and technology Forms of application and semi-finished materials Materials science Mechanical properties Nanocomposites Nanostructure Polymer industry, paints, wood Polymer matrix composites Polymethyl methacrylates Polymethylmethacrylate Scanning electron microscopy Siloxanes Strength of materials Technology of polymers Thermal properties |
title | Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Mechanical%20Reinforcement%20of%20Poly(methyl%20methacrylate)%20via%20Incorporation%20of%20Polyhedral%20Oligomeric%20Silsesquioxane&rft.jtitle=Polymers%20&%20polymer%20composites&rft.au=Yang,%20Benhong&rft.date=2013&rft.volume=21&rft.issue=1&rft.spage=37&rft.epage=42&rft.pages=37-42&rft.issn=0967-3911&rft.eissn=1478-2391&rft_id=info:doi/10.1177/096739111302100105&rft_dat=%3Cgale_proqu%3EA318493324%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286686623&rft_id=info:pmid/&rft_galeid=A318493324&rfr_iscdi=true |