Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane

A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers & polymer composites 2013, Vol.21 (1), p.37-42
Hauptverfasser: Yang, Benhong, Li, Meng, Wu, Yun, Wan, Xingliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 37
container_title Polymers & polymer composites
container_volume 21
creator Yang, Benhong
Li, Meng
Wu, Yun
Wan, Xingliang
description A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR) were employed to characterize the structures of the HO–POSS/PMMA nanocomposites. Scanning electron microscope (SEM) images showed that the as-prepared composite films were smooth, and no severe aggregation of HO–POSS was observed when POSS content was less than 1.0 wt.%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the incorporation of small amount of nanosized HO–POSS reinforced the thermal stability of PMMA. When 1.0 wt.% of HO–POSS was incorporated into PMMA matrix, the T g and T d increased by 28.8 °C and 18.9 °C, respectively, due to the strong interaction between POSS cages and PMMA chains. However, higher POSS contents (>2.0 wt.%) deteriorated the thermal and mechanical properties of the nanocomposites owing to the phase separation in the composite matrix caused by the aggregation of POSS cages.
doi_str_mv 10.1177/096739111302100105
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349449685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A318493324</galeid><sourcerecordid>A318493324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-c9ade7cc6dc6fa50562b59e0e5476eb3a630894fbf5266f2f185fd21c092c2a93</originalsourceid><addsrcrecordid>eNplkV9rFDEUxQex4Nr6BXwaEKF9mJo_k8zksZRWC5WK1ufh7p2bbkom2Saz4uKXN8NWH5QELjn8zuWQU1VvOTvnvOs-MKM7aTjnkgnOGGfqRbXibdc3osgvq9UCNAvxqnqd8yMrmNZqVf2631CawNcQxvoz4QaCw_L8Si7YmJAmCnMdbf0l-v3pRPNm7-tlAKa9h5nO6h8O6puAMW1jgtnF8Aff0JjKqjvvHuJEyWH9zflM-Wnn4k8IdFIdWSjCm-d5XH2_vrq__NTc3n28uby4bVB23dyggZE6RD2itqCY0mKtDDFSbadpLUFL1pvWrq0SWlthea_sKDgyI1CAkcfV6WHvNsWnHeV5mFxG8r5kiLs8cNmatjW6VwV99w_6GHcplHQDF73W5QpZqPMD9QCehuWj5gRYzkiTwxjIuqJfSN63RkrRFoM4GDDFnBPZYZvcBGk_cDYsBQ7_F1hM75-zQC6V2AQBXf7rFLo3RgsufwN8EJun</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1286686623</pqid></control><display><type>article</type><title>Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane</title><source>Sage Journals GOLD Open Access 2024</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Benhong ; Li, Meng ; Wu, Yun ; Wan, Xingliang</creator><creatorcontrib>Yang, Benhong ; Li, Meng ; Wu, Yun ; Wan, Xingliang</creatorcontrib><description>A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR) were employed to characterize the structures of the HO–POSS/PMMA nanocomposites. Scanning electron microscope (SEM) images showed that the as-prepared composite films were smooth, and no severe aggregation of HO–POSS was observed when POSS content was less than 1.0 wt.%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the incorporation of small amount of nanosized HO–POSS reinforced the thermal stability of PMMA. When 1.0 wt.% of HO–POSS was incorporated into PMMA matrix, the T g and T d increased by 28.8 °C and 18.9 °C, respectively, due to the strong interaction between POSS cages and PMMA chains. However, higher POSS contents (&gt;2.0 wt.%) deteriorated the thermal and mechanical properties of the nanocomposites owing to the phase separation in the composite matrix caused by the aggregation of POSS cages.</description><identifier>ISSN: 0967-3911</identifier><identifier>EISSN: 1478-2391</identifier><identifier>DOI: 10.1177/096739111302100105</identifier><language>eng</language><publisher>Shrewsbury: Rapra</publisher><subject>Agglomeration ; Applied sciences ; Cages ; Composites ; Differential scanning calorimetry ; Exact sciences and technology ; Forms of application and semi-finished materials ; Materials science ; Mechanical properties ; Nanocomposites ; Nanostructure ; Polymer industry, paints, wood ; Polymer matrix composites ; Polymethyl methacrylates ; Polymethylmethacrylate ; Scanning electron microscopy ; Siloxanes ; Strength of materials ; Technology of polymers ; Thermal properties</subject><ispartof>Polymers &amp; polymer composites, 2013, Vol.21 (1), p.37-42</ispartof><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Sage Publications Ltd. (UK)</rights><rights>Copyright Smithers Rapra Technology Limited 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-c9ade7cc6dc6fa50562b59e0e5476eb3a630894fbf5266f2f185fd21c092c2a93</citedby><cites>FETCH-LOGICAL-c377t-c9ade7cc6dc6fa50562b59e0e5476eb3a630894fbf5266f2f185fd21c092c2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26899621$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Benhong</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wu, Yun</creatorcontrib><creatorcontrib>Wan, Xingliang</creatorcontrib><title>Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane</title><title>Polymers &amp; polymer composites</title><description>A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR) were employed to characterize the structures of the HO–POSS/PMMA nanocomposites. Scanning electron microscope (SEM) images showed that the as-prepared composite films were smooth, and no severe aggregation of HO–POSS was observed when POSS content was less than 1.0 wt.%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the incorporation of small amount of nanosized HO–POSS reinforced the thermal stability of PMMA. When 1.0 wt.% of HO–POSS was incorporated into PMMA matrix, the T g and T d increased by 28.8 °C and 18.9 °C, respectively, due to the strong interaction between POSS cages and PMMA chains. However, higher POSS contents (&gt;2.0 wt.%) deteriorated the thermal and mechanical properties of the nanocomposites owing to the phase separation in the composite matrix caused by the aggregation of POSS cages.</description><subject>Agglomeration</subject><subject>Applied sciences</subject><subject>Cages</subject><subject>Composites</subject><subject>Differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer matrix composites</subject><subject>Polymethyl methacrylates</subject><subject>Polymethylmethacrylate</subject><subject>Scanning electron microscopy</subject><subject>Siloxanes</subject><subject>Strength of materials</subject><subject>Technology of polymers</subject><subject>Thermal properties</subject><issn>0967-3911</issn><issn>1478-2391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkV9rFDEUxQex4Nr6BXwaEKF9mJo_k8zksZRWC5WK1ufh7p2bbkom2Saz4uKXN8NWH5QELjn8zuWQU1VvOTvnvOs-MKM7aTjnkgnOGGfqRbXibdc3osgvq9UCNAvxqnqd8yMrmNZqVf2631CawNcQxvoz4QaCw_L8Si7YmJAmCnMdbf0l-v3pRPNm7-tlAKa9h5nO6h8O6puAMW1jgtnF8Aff0JjKqjvvHuJEyWH9zflM-Wnn4k8IdFIdWSjCm-d5XH2_vrq__NTc3n28uby4bVB23dyggZE6RD2itqCY0mKtDDFSbadpLUFL1pvWrq0SWlthea_sKDgyI1CAkcfV6WHvNsWnHeV5mFxG8r5kiLs8cNmatjW6VwV99w_6GHcplHQDF73W5QpZqPMD9QCehuWj5gRYzkiTwxjIuqJfSN63RkrRFoM4GDDFnBPZYZvcBGk_cDYsBQ7_F1hM75-zQC6V2AQBXf7rFLo3RgsufwN8EJun</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Yang, Benhong</creator><creator>Li, Meng</creator><creator>Wu, Yun</creator><creator>Wan, Xingliang</creator><general>Rapra</general><general>Sage Publications Ltd. (UK)</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>2013</creationdate><title>Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane</title><author>Yang, Benhong ; Li, Meng ; Wu, Yun ; Wan, Xingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-c9ade7cc6dc6fa50562b59e0e5476eb3a630894fbf5266f2f185fd21c092c2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agglomeration</topic><topic>Applied sciences</topic><topic>Cages</topic><topic>Composites</topic><topic>Differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer matrix composites</topic><topic>Polymethyl methacrylates</topic><topic>Polymethylmethacrylate</topic><topic>Scanning electron microscopy</topic><topic>Siloxanes</topic><topic>Strength of materials</topic><topic>Technology of polymers</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Benhong</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Wu, Yun</creatorcontrib><creatorcontrib>Wan, Xingliang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK &amp; Ireland Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Polymers &amp; polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Benhong</au><au>Li, Meng</au><au>Wu, Yun</au><au>Wan, Xingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane</atitle><jtitle>Polymers &amp; polymer composites</jtitle><date>2013</date><risdate>2013</risdate><volume>21</volume><issue>1</issue><spage>37</spage><epage>42</epage><pages>37-42</pages><issn>0967-3911</issn><eissn>1478-2391</eissn><abstract>A series of inorganic/organic nanocomposites were prepared by blending cage-like, hydroxyl-bearing polyhedral oligomeric silsesquioxane (HO–POSS) with poly(methyl methacrylate) (PMMA) in THF solvent. Fourier transform infrared spectrophotometry (FTIR) and 29 Si–nuclear magnetic resonance ( 29 Si-NMR) were employed to characterize the structures of the HO–POSS/PMMA nanocomposites. Scanning electron microscope (SEM) images showed that the as-prepared composite films were smooth, and no severe aggregation of HO–POSS was observed when POSS content was less than 1.0 wt.%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results showed that the incorporation of small amount of nanosized HO–POSS reinforced the thermal stability of PMMA. When 1.0 wt.% of HO–POSS was incorporated into PMMA matrix, the T g and T d increased by 28.8 °C and 18.9 °C, respectively, due to the strong interaction between POSS cages and PMMA chains. However, higher POSS contents (&gt;2.0 wt.%) deteriorated the thermal and mechanical properties of the nanocomposites owing to the phase separation in the composite matrix caused by the aggregation of POSS cages.</abstract><cop>Shrewsbury</cop><pub>Rapra</pub><doi>10.1177/096739111302100105</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-3911
ispartof Polymers & polymer composites, 2013, Vol.21 (1), p.37-42
issn 0967-3911
1478-2391
language eng
recordid cdi_proquest_miscellaneous_1349449685
source Sage Journals GOLD Open Access 2024; EZB-FREE-00999 freely available EZB journals
subjects Agglomeration
Applied sciences
Cages
Composites
Differential scanning calorimetry
Exact sciences and technology
Forms of application and semi-finished materials
Materials science
Mechanical properties
Nanocomposites
Nanostructure
Polymer industry, paints, wood
Polymer matrix composites
Polymethyl methacrylates
Polymethylmethacrylate
Scanning electron microscopy
Siloxanes
Strength of materials
Technology of polymers
Thermal properties
title Thermal and Mechanical Reinforcement of Poly(methyl methacrylate) via Incorporation of Polyhedral Oligomeric Silsesquioxane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20Mechanical%20Reinforcement%20of%20Poly(methyl%20methacrylate)%20via%20Incorporation%20of%20Polyhedral%20Oligomeric%20Silsesquioxane&rft.jtitle=Polymers%20&%20polymer%20composites&rft.au=Yang,%20Benhong&rft.date=2013&rft.volume=21&rft.issue=1&rft.spage=37&rft.epage=42&rft.pages=37-42&rft.issn=0967-3911&rft.eissn=1478-2391&rft_id=info:doi/10.1177/096739111302100105&rft_dat=%3Cgale_proqu%3EA318493324%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1286686623&rft_id=info:pmid/&rft_galeid=A318493324&rfr_iscdi=true