Upwind Finite-Volume Solution of Stochastic Burgers’ Equation

In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics (Irvine, Calif.) Calif.), 2012-11, Vol.3 (11), p.1818-1825
Hauptverfasser: El-Beltagy, Mohamed A., Wafa, Mohamed I., Galal, Osama H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1825
container_issue 11
container_start_page 1818
container_title Applied mathematics (Irvine, Calif.)
container_volume 3
creator El-Beltagy, Mohamed A.
Wafa, Mohamed I.
Galal, Osama H.
description In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simulations are used to validate and compare the developed solver. The mean, standard deviation and the probability distribution function (p.d.f) of the stochastic Burgers' solution is quantified and the effect of some parameters is investigated. The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, Monte-Carlo simulations are done in parallel and the execution times are compared in both cases.
doi_str_mv 10.4236/am.2012.331247
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349444830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349444830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1577-5bbf4368d183e24a9a24a28580082d4d01f49ce260828dfff988c7ccd1783193</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EElXpypyRJcG_sT0hqFpAqsTQwmq5jg1GSdzaiRAbr8Hr8SQkCuIO9_uudHSHA8AlggXFpLzWTYEhwgUhCFN-AmYYMZxzIsnpfxfsHCxSeofDMAglpzNw83z48G2VrX3rO5u_hLpvbLYdovOhzYLLtl0wbzp13mR3fXy1Mf18fWerY69H4gKcOV0nu_jLOditV7vlQ755un9c3m5ygxjnOdvvHSWlqJAgFlMt9bCwYAJCgStaQeSoNBaXwykq55wUwnBjKsQFQZLMwdX09hDDsbepU41Pxta1bm3ok0KESkqpIHBAiwk1MaQUrVOH6BsdPxWCanSldKNGV2pyRX4B1rxb2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349444830</pqid></control><display><type>article</type><title>Upwind Finite-Volume Solution of Stochastic Burgers’ Equation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>El-Beltagy, Mohamed A. ; Wafa, Mohamed I. ; Galal, Osama H.</creator><creatorcontrib>El-Beltagy, Mohamed A. ; Wafa, Mohamed I. ; Galal, Osama H.</creatorcontrib><description>In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simulations are used to validate and compare the developed solver. The mean, standard deviation and the probability distribution function (p.d.f) of the stochastic Burgers' solution is quantified and the effect of some parameters is investigated. The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, Monte-Carlo simulations are done in parallel and the execution times are compared in both cases.</description><identifier>ISSN: 2152-7385</identifier><identifier>EISSN: 2152-7393</identifier><identifier>DOI: 10.4236/am.2012.331247</identifier><language>eng</language><subject>Computer simulation ; Linear systems ; Mathematical analysis ; Mathematical models ; Monte Carlo methods ; Solvers ; Stochasticity ; Viscosity</subject><ispartof>Applied mathematics (Irvine, Calif.), 2012-11, Vol.3 (11), p.1818-1825</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1577-5bbf4368d183e24a9a24a28580082d4d01f49ce260828dfff988c7ccd1783193</citedby><cites>FETCH-LOGICAL-c1577-5bbf4368d183e24a9a24a28580082d4d01f49ce260828dfff988c7ccd1783193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>El-Beltagy, Mohamed A.</creatorcontrib><creatorcontrib>Wafa, Mohamed I.</creatorcontrib><creatorcontrib>Galal, Osama H.</creatorcontrib><title>Upwind Finite-Volume Solution of Stochastic Burgers’ Equation</title><title>Applied mathematics (Irvine, Calif.)</title><description>In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simulations are used to validate and compare the developed solver. The mean, standard deviation and the probability distribution function (p.d.f) of the stochastic Burgers' solution is quantified and the effect of some parameters is investigated. The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, Monte-Carlo simulations are done in parallel and the execution times are compared in both cases.</description><subject>Computer simulation</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Solvers</subject><subject>Stochasticity</subject><subject>Viscosity</subject><issn>2152-7385</issn><issn>2152-7393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAURi0EElXpypyRJcG_sT0hqFpAqsTQwmq5jg1GSdzaiRAbr8Hr8SQkCuIO9_uudHSHA8AlggXFpLzWTYEhwgUhCFN-AmYYMZxzIsnpfxfsHCxSeofDMAglpzNw83z48G2VrX3rO5u_hLpvbLYdovOhzYLLtl0wbzp13mR3fXy1Mf18fWerY69H4gKcOV0nu_jLOditV7vlQ755un9c3m5ygxjnOdvvHSWlqJAgFlMt9bCwYAJCgStaQeSoNBaXwykq55wUwnBjKsQFQZLMwdX09hDDsbepU41Pxta1bm3ok0KESkqpIHBAiwk1MaQUrVOH6BsdPxWCanSldKNGV2pyRX4B1rxb2A</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>El-Beltagy, Mohamed A.</creator><creator>Wafa, Mohamed I.</creator><creator>Galal, Osama H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121101</creationdate><title>Upwind Finite-Volume Solution of Stochastic Burgers’ Equation</title><author>El-Beltagy, Mohamed A. ; Wafa, Mohamed I. ; Galal, Osama H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1577-5bbf4368d183e24a9a24a28580082d4d01f49ce260828dfff988c7ccd1783193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer simulation</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Solvers</topic><topic>Stochasticity</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>El-Beltagy, Mohamed A.</creatorcontrib><creatorcontrib>Wafa, Mohamed I.</creatorcontrib><creatorcontrib>Galal, Osama H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics (Irvine, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Beltagy, Mohamed A.</au><au>Wafa, Mohamed I.</au><au>Galal, Osama H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upwind Finite-Volume Solution of Stochastic Burgers’ Equation</atitle><jtitle>Applied mathematics (Irvine, Calif.)</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>3</volume><issue>11</issue><spage>1818</spage><epage>1825</epage><pages>1818-1825</pages><issn>2152-7385</issn><eissn>2152-7393</eissn><abstract>In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simulations are used to validate and compare the developed solver. The mean, standard deviation and the probability distribution function (p.d.f) of the stochastic Burgers' solution is quantified and the effect of some parameters is investigated. The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, Monte-Carlo simulations are done in parallel and the execution times are compared in both cases.</abstract><doi>10.4236/am.2012.331247</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2152-7385
ispartof Applied mathematics (Irvine, Calif.), 2012-11, Vol.3 (11), p.1818-1825
issn 2152-7385
2152-7393
language eng
recordid cdi_proquest_miscellaneous_1349444830
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computer simulation
Linear systems
Mathematical analysis
Mathematical models
Monte Carlo methods
Solvers
Stochasticity
Viscosity
title Upwind Finite-Volume Solution of Stochastic Burgers’ Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upwind%20Finite-Volume%20Solution%20of%20Stochastic%20Burgers%E2%80%99%20Equation&rft.jtitle=Applied%20mathematics%20(Irvine,%20Calif.)&rft.au=El-Beltagy,%20Mohamed%20A.&rft.date=2012-11-01&rft.volume=3&rft.issue=11&rft.spage=1818&rft.epage=1825&rft.pages=1818-1825&rft.issn=2152-7385&rft.eissn=2152-7393&rft_id=info:doi/10.4236/am.2012.331247&rft_dat=%3Cproquest_cross%3E1349444830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349444830&rft_id=info:pmid/&rfr_iscdi=true