Upwind Finite-Volume Solution of Stochastic Burgers’ Equation
In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is qua...
Gespeichert in:
Veröffentlicht in: | Applied mathematics (Irvine, Calif.) Calif.), 2012-11, Vol.3 (11), p.1818-1825 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1825 |
---|---|
container_issue | 11 |
container_start_page | 1818 |
container_title | Applied mathematics (Irvine, Calif.) |
container_volume | 3 |
creator | El-Beltagy, Mohamed A. Wafa, Mohamed I. Galal, Osama H. |
description | In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simulations are used to validate and compare the developed solver. The mean, standard deviation and the probability distribution function (p.d.f) of the stochastic Burgers' solution is quantified and the effect of some parameters is investigated. The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, Monte-Carlo simulations are done in parallel and the execution times are compared in both cases. |
doi_str_mv | 10.4236/am.2012.331247 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349444830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349444830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1577-5bbf4368d183e24a9a24a28580082d4d01f49ce260828dfff988c7ccd1783193</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EElXpypyRJcG_sT0hqFpAqsTQwmq5jg1GSdzaiRAbr8Hr8SQkCuIO9_uudHSHA8AlggXFpLzWTYEhwgUhCFN-AmYYMZxzIsnpfxfsHCxSeofDMAglpzNw83z48G2VrX3rO5u_hLpvbLYdovOhzYLLtl0wbzp13mR3fXy1Mf18fWerY69H4gKcOV0nu_jLOditV7vlQ755un9c3m5ygxjnOdvvHSWlqJAgFlMt9bCwYAJCgStaQeSoNBaXwykq55wUwnBjKsQFQZLMwdX09hDDsbepU41Pxta1bm3ok0KESkqpIHBAiwk1MaQUrVOH6BsdPxWCanSldKNGV2pyRX4B1rxb2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349444830</pqid></control><display><type>article</type><title>Upwind Finite-Volume Solution of Stochastic Burgers’ Equation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>El-Beltagy, Mohamed A. ; Wafa, Mohamed I. ; Galal, Osama H.</creator><creatorcontrib>El-Beltagy, Mohamed A. ; Wafa, Mohamed I. ; Galal, Osama H.</creatorcontrib><description>In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simulations are used to validate and compare the developed solver. The mean, standard deviation and the probability distribution function (p.d.f) of the stochastic Burgers' solution is quantified and the effect of some parameters is investigated. The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, Monte-Carlo simulations are done in parallel and the execution times are compared in both cases.</description><identifier>ISSN: 2152-7385</identifier><identifier>EISSN: 2152-7393</identifier><identifier>DOI: 10.4236/am.2012.331247</identifier><language>eng</language><subject>Computer simulation ; Linear systems ; Mathematical analysis ; Mathematical models ; Monte Carlo methods ; Solvers ; Stochasticity ; Viscosity</subject><ispartof>Applied mathematics (Irvine, Calif.), 2012-11, Vol.3 (11), p.1818-1825</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1577-5bbf4368d183e24a9a24a28580082d4d01f49ce260828dfff988c7ccd1783193</citedby><cites>FETCH-LOGICAL-c1577-5bbf4368d183e24a9a24a28580082d4d01f49ce260828dfff988c7ccd1783193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>El-Beltagy, Mohamed A.</creatorcontrib><creatorcontrib>Wafa, Mohamed I.</creatorcontrib><creatorcontrib>Galal, Osama H.</creatorcontrib><title>Upwind Finite-Volume Solution of Stochastic Burgers’ Equation</title><title>Applied mathematics (Irvine, Calif.)</title><description>In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simulations are used to validate and compare the developed solver. The mean, standard deviation and the probability distribution function (p.d.f) of the stochastic Burgers' solution is quantified and the effect of some parameters is investigated. The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, Monte-Carlo simulations are done in parallel and the execution times are compared in both cases.</description><subject>Computer simulation</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Solvers</subject><subject>Stochasticity</subject><subject>Viscosity</subject><issn>2152-7385</issn><issn>2152-7393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAURi0EElXpypyRJcG_sT0hqFpAqsTQwmq5jg1GSdzaiRAbr8Hr8SQkCuIO9_uudHSHA8AlggXFpLzWTYEhwgUhCFN-AmYYMZxzIsnpfxfsHCxSeofDMAglpzNw83z48G2VrX3rO5u_hLpvbLYdovOhzYLLtl0wbzp13mR3fXy1Mf18fWerY69H4gKcOV0nu_jLOditV7vlQ755un9c3m5ygxjnOdvvHSWlqJAgFlMt9bCwYAJCgStaQeSoNBaXwykq55wUwnBjKsQFQZLMwdX09hDDsbepU41Pxta1bm3ok0KESkqpIHBAiwk1MaQUrVOH6BsdPxWCanSldKNGV2pyRX4B1rxb2A</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>El-Beltagy, Mohamed A.</creator><creator>Wafa, Mohamed I.</creator><creator>Galal, Osama H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121101</creationdate><title>Upwind Finite-Volume Solution of Stochastic Burgers’ Equation</title><author>El-Beltagy, Mohamed A. ; Wafa, Mohamed I. ; Galal, Osama H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1577-5bbf4368d183e24a9a24a28580082d4d01f49ce260828dfff988c7ccd1783193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer simulation</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Solvers</topic><topic>Stochasticity</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>El-Beltagy, Mohamed A.</creatorcontrib><creatorcontrib>Wafa, Mohamed I.</creatorcontrib><creatorcontrib>Galal, Osama H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics (Irvine, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Beltagy, Mohamed A.</au><au>Wafa, Mohamed I.</au><au>Galal, Osama H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upwind Finite-Volume Solution of Stochastic Burgers’ Equation</atitle><jtitle>Applied mathematics (Irvine, Calif.)</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>3</volume><issue>11</issue><spage>1818</spage><epage>1825</epage><pages>1818-1825</pages><issn>2152-7385</issn><eissn>2152-7393</eissn><abstract>In this paper, a stochastic finite-volume solver based on polynomial chaos expansion is developed. The upwind scheme is used to avoid the numerical instabilities. The Burgers' equation subjected to deterministic boundary conditions and random viscosity is solved. The solution uncertainty is quantified for different values of viscosity. Monte-Carlo simulations are used to validate and compare the developed solver. The mean, standard deviation and the probability distribution function (p.d.f) of the stochastic Burgers' solution is quantified and the effect of some parameters is investigated. The large sparse linear system resulting from the stochastic solver is solved in parallel to enhance the performance. Also, Monte-Carlo simulations are done in parallel and the execution times are compared in both cases.</abstract><doi>10.4236/am.2012.331247</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2152-7385 |
ispartof | Applied mathematics (Irvine, Calif.), 2012-11, Vol.3 (11), p.1818-1825 |
issn | 2152-7385 2152-7393 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349444830 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computer simulation Linear systems Mathematical analysis Mathematical models Monte Carlo methods Solvers Stochasticity Viscosity |
title | Upwind Finite-Volume Solution of Stochastic Burgers’ Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upwind%20Finite-Volume%20Solution%20of%20Stochastic%20Burgers%E2%80%99%20Equation&rft.jtitle=Applied%20mathematics%20(Irvine,%20Calif.)&rft.au=El-Beltagy,%20Mohamed%20A.&rft.date=2012-11-01&rft.volume=3&rft.issue=11&rft.spage=1818&rft.epage=1825&rft.pages=1818-1825&rft.issn=2152-7385&rft.eissn=2152-7393&rft_id=info:doi/10.4236/am.2012.331247&rft_dat=%3Cproquest_cross%3E1349444830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349444830&rft_id=info:pmid/&rfr_iscdi=true |