Quantitative approximations of evolving probability measures and sequential Markov chain Monte Carlo methods

We study approximations of evolving probability measures by an interacting particle system. The particle system dynamics is a combination of independent Markov chain moves and importance sampling/resampling steps. Under global regularity conditions, we derive non-asymptotic error bounds for the part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2013-04, Vol.155 (3-4), p.665-701
Hauptverfasser: Eberle, Andreas, Marinelli, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!