All hot wire chemical vapor deposition low substrate temperature transparent thin film moisture barrier

We deposited a silicon nitride/polymer hybrid multilayer moisture barrier for flexible electronics in a hot wire chemical vapor deposition process, entirely below 100°C. We were able to reach a water vapor transmission rate (WVTR) as low as 5×10−6g/m2/day at a temperature of 60°C and a relative humi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2013-04, Vol.532, p.84-88
Hauptverfasser: Spee, D.A., Schipper, M.R., van der Werf, C.H.M., Rath, J.K., Schropp, R.E.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue
container_start_page 84
container_title Thin solid films
container_volume 532
creator Spee, D.A.
Schipper, M.R.
van der Werf, C.H.M.
Rath, J.K.
Schropp, R.E.I.
description We deposited a silicon nitride/polymer hybrid multilayer moisture barrier for flexible electronics in a hot wire chemical vapor deposition process, entirely below 100°C. We were able to reach a water vapor transmission rate (WVTR) as low as 5×10−6g/m2/day at a temperature of 60°C and a relative humidity of 90% for a simple three-layer structure consisting of two low-temperature silicon nitride (SiNx) layers and a polymer layer in between. This WVTR is low enough for organic and polymer devices. In a second experiment it is investigated how the yield of our samples increases with the number of SiNx layers, while keeping the total SiNx thickness constant. Cross sectional scanning electron microscopy images of degraded samples reveal a high structural robustness of our multilayers. ► A multilayer gas barrier was made by hot wire chemical vapor deposition at 100°C. ► A water vapor transmission rate of 5×10−6g/m2/day was found. ► Found at 60°C and a relative humidity of 90%, this is low enough for any device. ► These layers can be deposited directly onto organic of polymeric active devices. ► The adhesion between the organic and inorganic layers, and robustness is high.
doi_str_mv 10.1016/j.tsf.2012.11.146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349433382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609012016781</els_id><sourcerecordid>1349433382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-db62503fa2d288803f11db2e86a941f50fe2c584ff5ad1e2844863e190a99b1d3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNs0D9CbLoVe7GgkryPTU1iaJrCQS3oWsjzKarEtV6PN0rePtht6zEmD9P0j_o-xryBqENBe7-tMvpYCZA1QQ9N-YCvQN10lbxR8ZCshGlG1ohOf2GeivRCFlGrFnm_Hke9i5seQkLsdTsHZkb_YJSY-4BIp5BBnPsYjp0NPOdmMPOO0YJkOJVNuZlpswjnzvAsz92Gc-BQD_XvubUoB0xd24e1IePV2XrLfdz-fNvfV9vHXw-Z2WznVilwNfSvXQnkrB6m1LhPA0EvUre0a8GvhUbq1brxf2wFQ6qbRrULohO26HgZ1yb6f9y4p_jkgZTMFcjiOdsZ4IAOq6RqllJYFhTPqUiRK6M2SwmTTXwPCnKSavSlSzUmqATBFasl8e1tvqXjypbsL9D9YZHe61VC4H2cOS9eX0t-QCzg7HIpml80Qwzu_vAIZ-Y5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349433382</pqid></control><display><type>article</type><title>All hot wire chemical vapor deposition low substrate temperature transparent thin film moisture barrier</title><source>Elsevier ScienceDirect Journals</source><creator>Spee, D.A. ; Schipper, M.R. ; van der Werf, C.H.M. ; Rath, J.K. ; Schropp, R.E.I.</creator><creatorcontrib>Spee, D.A. ; Schipper, M.R. ; van der Werf, C.H.M. ; Rath, J.K. ; Schropp, R.E.I.</creatorcontrib><description>We deposited a silicon nitride/polymer hybrid multilayer moisture barrier for flexible electronics in a hot wire chemical vapor deposition process, entirely below 100°C. We were able to reach a water vapor transmission rate (WVTR) as low as 5×10−6g/m2/day at a temperature of 60°C and a relative humidity of 90% for a simple three-layer structure consisting of two low-temperature silicon nitride (SiNx) layers and a polymer layer in between. This WVTR is low enough for organic and polymer devices. In a second experiment it is investigated how the yield of our samples increases with the number of SiNx layers, while keeping the total SiNx thickness constant. Cross sectional scanning electron microscopy images of degraded samples reveal a high structural robustness of our multilayers. ► A multilayer gas barrier was made by hot wire chemical vapor deposition at 100°C. ► A water vapor transmission rate of 5×10−6g/m2/day was found. ► Found at 60°C and a relative humidity of 90%, this is low enough for any device. ► These layers can be deposited directly onto organic of polymeric active devices. ► The adhesion between the organic and inorganic layers, and robustness is high.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2012.11.146</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Barriers ; Chemical vapor deposition ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Flexible electronics ; Hot wire chemical vapor deposition ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Moisture ; Moisture barrier ; Multilayers ; Physics ; Silicon nitride ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film encapsulation ; Thin film structure and morphology ; Thin films ; Wire</subject><ispartof>Thin solid films, 2013-04, Vol.532, p.84-88</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-db62503fa2d288803f11db2e86a941f50fe2c584ff5ad1e2844863e190a99b1d3</citedby><cites>FETCH-LOGICAL-c360t-db62503fa2d288803f11db2e86a941f50fe2c584ff5ad1e2844863e190a99b1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040609012016781$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27398681$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Spee, D.A.</creatorcontrib><creatorcontrib>Schipper, M.R.</creatorcontrib><creatorcontrib>van der Werf, C.H.M.</creatorcontrib><creatorcontrib>Rath, J.K.</creatorcontrib><creatorcontrib>Schropp, R.E.I.</creatorcontrib><title>All hot wire chemical vapor deposition low substrate temperature transparent thin film moisture barrier</title><title>Thin solid films</title><description>We deposited a silicon nitride/polymer hybrid multilayer moisture barrier for flexible electronics in a hot wire chemical vapor deposition process, entirely below 100°C. We were able to reach a water vapor transmission rate (WVTR) as low as 5×10−6g/m2/day at a temperature of 60°C and a relative humidity of 90% for a simple three-layer structure consisting of two low-temperature silicon nitride (SiNx) layers and a polymer layer in between. This WVTR is low enough for organic and polymer devices. In a second experiment it is investigated how the yield of our samples increases with the number of SiNx layers, while keeping the total SiNx thickness constant. Cross sectional scanning electron microscopy images of degraded samples reveal a high structural robustness of our multilayers. ► A multilayer gas barrier was made by hot wire chemical vapor deposition at 100°C. ► A water vapor transmission rate of 5×10−6g/m2/day was found. ► Found at 60°C and a relative humidity of 90%, this is low enough for any device. ► These layers can be deposited directly onto organic of polymeric active devices. ► The adhesion between the organic and inorganic layers, and robustness is high.</description><subject>Barriers</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Flexible electronics</subject><subject>Hot wire chemical vapor deposition</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Moisture</subject><subject>Moisture barrier</subject><subject>Multilayers</subject><subject>Physics</subject><subject>Silicon nitride</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film encapsulation</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><subject>Wire</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNs0D9CbLoVe7GgkryPTU1iaJrCQS3oWsjzKarEtV6PN0rePtht6zEmD9P0j_o-xryBqENBe7-tMvpYCZA1QQ9N-YCvQN10lbxR8ZCshGlG1ohOf2GeivRCFlGrFnm_Hke9i5seQkLsdTsHZkb_YJSY-4BIp5BBnPsYjp0NPOdmMPOO0YJkOJVNuZlpswjnzvAsz92Gc-BQD_XvubUoB0xd24e1IePV2XrLfdz-fNvfV9vHXw-Z2WznVilwNfSvXQnkrB6m1LhPA0EvUre0a8GvhUbq1brxf2wFQ6qbRrULohO26HgZ1yb6f9y4p_jkgZTMFcjiOdsZ4IAOq6RqllJYFhTPqUiRK6M2SwmTTXwPCnKSavSlSzUmqATBFasl8e1tvqXjypbsL9D9YZHe61VC4H2cOS9eX0t-QCzg7HIpml80Qwzu_vAIZ-Y5E</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Spee, D.A.</creator><creator>Schipper, M.R.</creator><creator>van der Werf, C.H.M.</creator><creator>Rath, J.K.</creator><creator>Schropp, R.E.I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>All hot wire chemical vapor deposition low substrate temperature transparent thin film moisture barrier</title><author>Spee, D.A. ; Schipper, M.R. ; van der Werf, C.H.M. ; Rath, J.K. ; Schropp, R.E.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-db62503fa2d288803f11db2e86a941f50fe2c584ff5ad1e2844863e190a99b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Barriers</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Flexible electronics</topic><topic>Hot wire chemical vapor deposition</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Moisture</topic><topic>Moisture barrier</topic><topic>Multilayers</topic><topic>Physics</topic><topic>Silicon nitride</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film encapsulation</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spee, D.A.</creatorcontrib><creatorcontrib>Schipper, M.R.</creatorcontrib><creatorcontrib>van der Werf, C.H.M.</creatorcontrib><creatorcontrib>Rath, J.K.</creatorcontrib><creatorcontrib>Schropp, R.E.I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spee, D.A.</au><au>Schipper, M.R.</au><au>van der Werf, C.H.M.</au><au>Rath, J.K.</au><au>Schropp, R.E.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All hot wire chemical vapor deposition low substrate temperature transparent thin film moisture barrier</atitle><jtitle>Thin solid films</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>532</volume><spage>84</spage><epage>88</epage><pages>84-88</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>We deposited a silicon nitride/polymer hybrid multilayer moisture barrier for flexible electronics in a hot wire chemical vapor deposition process, entirely below 100°C. We were able to reach a water vapor transmission rate (WVTR) as low as 5×10−6g/m2/day at a temperature of 60°C and a relative humidity of 90% for a simple three-layer structure consisting of two low-temperature silicon nitride (SiNx) layers and a polymer layer in between. This WVTR is low enough for organic and polymer devices. In a second experiment it is investigated how the yield of our samples increases with the number of SiNx layers, while keeping the total SiNx thickness constant. Cross sectional scanning electron microscopy images of degraded samples reveal a high structural robustness of our multilayers. ► A multilayer gas barrier was made by hot wire chemical vapor deposition at 100°C. ► A water vapor transmission rate of 5×10−6g/m2/day was found. ► Found at 60°C and a relative humidity of 90%, this is low enough for any device. ► These layers can be deposited directly onto organic of polymeric active devices. ► The adhesion between the organic and inorganic layers, and robustness is high.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2012.11.146</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2013-04, Vol.532, p.84-88
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1349433382
source Elsevier ScienceDirect Journals
subjects Barriers
Chemical vapor deposition
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Flexible electronics
Hot wire chemical vapor deposition
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Moisture
Moisture barrier
Multilayers
Physics
Silicon nitride
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film encapsulation
Thin film structure and morphology
Thin films
Wire
title All hot wire chemical vapor deposition low substrate temperature transparent thin film moisture barrier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20hot%20wire%20chemical%20vapor%20deposition%20low%20substrate%20temperature%20transparent%20thin%20film%20moisture%20barrier&rft.jtitle=Thin%20solid%20films&rft.au=Spee,%20D.A.&rft.date=2013-04-01&rft.volume=532&rft.spage=84&rft.epage=88&rft.pages=84-88&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2012.11.146&rft_dat=%3Cproquest_cross%3E1349433382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349433382&rft_id=info:pmid/&rft_els_id=S0040609012016781&rfr_iscdi=true