Multi-Population Classical HLA Type Imputation. e1002877
Statistical imputation of classical HLA alleles in case-control studies has become established as a valuable tool for identifying and fine-mapping signals of disease association in the MHC. Imputation into diverse populations has, however, remained challenging, mainly because of the additional haplo...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2013-02, Vol.9 (2) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | PLoS computational biology |
container_volume | 9 |
creator | Dilthey, Alexander Leslie, Stephen Moutsianas, Loukas Shen, Judong Cox, Charles Nelson, Matthew R McVean, Gil |
description | Statistical imputation of classical HLA alleles in case-control studies has become established as a valuable tool for identifying and fine-mapping signals of disease association in the MHC. Imputation into diverse populations has, however, remained challenging, mainly because of the additional haplotypic heterogeneity introduced by combining reference panels of different sources. We present an HLA type imputation model, HLA*IMP:02, designed to operate on a multi-population reference panel. HLA*IMP:02 is based on a graphical representation of haplotype structure. We present a probabilistic algorithm to build such models for the HLA region, accommodating genotyping error, haplotypic heterogeneity and the need for maximum accuracy at the HLA loci, generalizing the work of Browning and Browning (2007) and Ron et al. (1998). HLA*IMP:02 achieves an average 4-digit imputation accuracy on diverse European panels of 97% (call rate 97%). On non-European samples, 2-digit performance is over 90% for most loci and ethnicities where data available. HLA*IMP:02 supports imputation of HLA-DPB1 and HLA-DRB3-5, is highly tolerant of missing data in the imputation panel and works on standard genotype data from popular genotyping chips. It is publicly available in source code and as a user-friendly web service framework. |
doi_str_mv | 10.1371/journal.pcbi.1002877 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349432720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349432720</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_13494327203</originalsourceid><addsrcrecordid>eNqVjL0KwjAYRYMgWH_ewCGjS2PStKYdpSgVFBy6l1gipKRN7JcMvr0ifQGne-AcLkJbRgnjgu07G8ZBGuLahyaM0iQXYoYilmU8FjzLF2gJ0FH6xeIQofwWjNfx3bpgpNd2wKWRALqVBlfXI67fTuFL74L_WYLV9LlG86c0oDbTrtDufKrLKnajfQUFvuk1tMoYOSgboGE8LVKeiITyP9IPwB8_xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349432720</pqid></control><display><type>article</type><title>Multi-Population Classical HLA Type Imputation. e1002877</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Dilthey, Alexander ; Leslie, Stephen ; Moutsianas, Loukas ; Shen, Judong ; Cox, Charles ; Nelson, Matthew R ; McVean, Gil</creator><creatorcontrib>Dilthey, Alexander ; Leslie, Stephen ; Moutsianas, Loukas ; Shen, Judong ; Cox, Charles ; Nelson, Matthew R ; McVean, Gil</creatorcontrib><description>Statistical imputation of classical HLA alleles in case-control studies has become established as a valuable tool for identifying and fine-mapping signals of disease association in the MHC. Imputation into diverse populations has, however, remained challenging, mainly because of the additional haplotypic heterogeneity introduced by combining reference panels of different sources. We present an HLA type imputation model, HLA*IMP:02, designed to operate on a multi-population reference panel. HLA*IMP:02 is based on a graphical representation of haplotype structure. We present a probabilistic algorithm to build such models for the HLA region, accommodating genotyping error, haplotypic heterogeneity and the need for maximum accuracy at the HLA loci, generalizing the work of Browning and Browning (2007) and Ron et al. (1998). HLA*IMP:02 achieves an average 4-digit imputation accuracy on diverse European panels of 97% (call rate 97%). On non-European samples, 2-digit performance is over 90% for most loci and ethnicities where data available. HLA*IMP:02 supports imputation of HLA-DPB1 and HLA-DRB3-5, is highly tolerant of missing data in the imputation panel and works on standard genotype data from popular genotyping chips. It is publicly available in source code and as a user-friendly web service framework.</description><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1002877</identifier><language>eng</language><subject>Accuracy ; Algorithms ; Browning ; Construction ; Heterogeneity ; Loci ; Panels ; Statistical methods</subject><ispartof>PLoS computational biology, 2013-02, Vol.9 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Dilthey, Alexander</creatorcontrib><creatorcontrib>Leslie, Stephen</creatorcontrib><creatorcontrib>Moutsianas, Loukas</creatorcontrib><creatorcontrib>Shen, Judong</creatorcontrib><creatorcontrib>Cox, Charles</creatorcontrib><creatorcontrib>Nelson, Matthew R</creatorcontrib><creatorcontrib>McVean, Gil</creatorcontrib><title>Multi-Population Classical HLA Type Imputation. e1002877</title><title>PLoS computational biology</title><description>Statistical imputation of classical HLA alleles in case-control studies has become established as a valuable tool for identifying and fine-mapping signals of disease association in the MHC. Imputation into diverse populations has, however, remained challenging, mainly because of the additional haplotypic heterogeneity introduced by combining reference panels of different sources. We present an HLA type imputation model, HLA*IMP:02, designed to operate on a multi-population reference panel. HLA*IMP:02 is based on a graphical representation of haplotype structure. We present a probabilistic algorithm to build such models for the HLA region, accommodating genotyping error, haplotypic heterogeneity and the need for maximum accuracy at the HLA loci, generalizing the work of Browning and Browning (2007) and Ron et al. (1998). HLA*IMP:02 achieves an average 4-digit imputation accuracy on diverse European panels of 97% (call rate 97%). On non-European samples, 2-digit performance is over 90% for most loci and ethnicities where data available. HLA*IMP:02 supports imputation of HLA-DPB1 and HLA-DRB3-5, is highly tolerant of missing data in the imputation panel and works on standard genotype data from popular genotyping chips. It is publicly available in source code and as a user-friendly web service framework.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Browning</subject><subject>Construction</subject><subject>Heterogeneity</subject><subject>Loci</subject><subject>Panels</subject><subject>Statistical methods</subject><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjL0KwjAYRYMgWH_ewCGjS2PStKYdpSgVFBy6l1gipKRN7JcMvr0ifQGne-AcLkJbRgnjgu07G8ZBGuLahyaM0iQXYoYilmU8FjzLF2gJ0FH6xeIQofwWjNfx3bpgpNd2wKWRALqVBlfXI67fTuFL74L_WYLV9LlG86c0oDbTrtDufKrLKnajfQUFvuk1tMoYOSgboGE8LVKeiITyP9IPwB8_xg</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Dilthey, Alexander</creator><creator>Leslie, Stephen</creator><creator>Moutsianas, Loukas</creator><creator>Shen, Judong</creator><creator>Cox, Charles</creator><creator>Nelson, Matthew R</creator><creator>McVean, Gil</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Multi-Population Classical HLA Type Imputation. e1002877</title><author>Dilthey, Alexander ; Leslie, Stephen ; Moutsianas, Loukas ; Shen, Judong ; Cox, Charles ; Nelson, Matthew R ; McVean, Gil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_13494327203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Browning</topic><topic>Construction</topic><topic>Heterogeneity</topic><topic>Loci</topic><topic>Panels</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dilthey, Alexander</creatorcontrib><creatorcontrib>Leslie, Stephen</creatorcontrib><creatorcontrib>Moutsianas, Loukas</creatorcontrib><creatorcontrib>Shen, Judong</creatorcontrib><creatorcontrib>Cox, Charles</creatorcontrib><creatorcontrib>Nelson, Matthew R</creatorcontrib><creatorcontrib>McVean, Gil</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dilthey, Alexander</au><au>Leslie, Stephen</au><au>Moutsianas, Loukas</au><au>Shen, Judong</au><au>Cox, Charles</au><au>Nelson, Matthew R</au><au>McVean, Gil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Population Classical HLA Type Imputation. e1002877</atitle><jtitle>PLoS computational biology</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>9</volume><issue>2</issue><eissn>1553-7358</eissn><abstract>Statistical imputation of classical HLA alleles in case-control studies has become established as a valuable tool for identifying and fine-mapping signals of disease association in the MHC. Imputation into diverse populations has, however, remained challenging, mainly because of the additional haplotypic heterogeneity introduced by combining reference panels of different sources. We present an HLA type imputation model, HLA*IMP:02, designed to operate on a multi-population reference panel. HLA*IMP:02 is based on a graphical representation of haplotype structure. We present a probabilistic algorithm to build such models for the HLA region, accommodating genotyping error, haplotypic heterogeneity and the need for maximum accuracy at the HLA loci, generalizing the work of Browning and Browning (2007) and Ron et al. (1998). HLA*IMP:02 achieves an average 4-digit imputation accuracy on diverse European panels of 97% (call rate 97%). On non-European samples, 2-digit performance is over 90% for most loci and ethnicities where data available. HLA*IMP:02 supports imputation of HLA-DPB1 and HLA-DRB3-5, is highly tolerant of missing data in the imputation panel and works on standard genotype data from popular genotyping chips. It is publicly available in source code and as a user-friendly web service framework.</abstract><doi>10.1371/journal.pcbi.1002877</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1553-7358 |
ispartof | PLoS computational biology, 2013-02, Vol.9 (2) |
issn | 1553-7358 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349432720 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Accuracy Algorithms Browning Construction Heterogeneity Loci Panels Statistical methods |
title | Multi-Population Classical HLA Type Imputation. e1002877 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Population%20Classical%20HLA%20Type%20Imputation.%20e1002877&rft.jtitle=PLoS%20computational%20biology&rft.au=Dilthey,%20Alexander&rft.date=2013-02-01&rft.volume=9&rft.issue=2&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1002877&rft_dat=%3Cproquest%3E1349432720%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349432720&rft_id=info:pmid/&rfr_iscdi=true |