An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System
To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2013-01, Vol.65 (7) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | International journal of computer applications |
container_volume | 65 |
creator | Devaki, P Shree, J Devi Nandini, S |
description | To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and rectifier output voltage are applied to fuzzy logic controller to estimate and control the optimal of maximum output power. The inputs to the FLC are the normalized values of error and variation of error. Triangular membership functions are used for input and output variables. The performance of both the schemes are simulated and a comparison is made. The simulation work is done in MATLAB 2010 environment. |
doi_str_mv | 10.5120/10933-5882 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349431254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349431254</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-24be141fb112ba556bd1929e0cee8920f9329f633615b0881f2134631725ac9e3</originalsourceid><addsrcrecordid>eNpdj09Lw0AQxRdRsNRe_AQLXrxEd_Zfdo-lVC1UFCx4LEk6iVuTTd1N0H57F_QgzmHe4_FjeEPIJbAbBZzdArNCZMoYfkImzOYqM8bkp3_8OZnFuGdphOXayglZzz1d-QHb1jXoB_pYfLlu7Ohz_4khbZeyTSiqd-cbOm-bPrjhraN1H-ir8zu69BiaI305xgG7C3JWF23E2a9OyeZuuVk8ZOun-9Vivs4OGmTGZYkgoS4BeFkopcsdWG6RVYjGclZbwW2thdCgSmYM1ByE1AJyrorKopiS65-zh9B_jBiHbedilV4oPPZj3CbaSgFcyYRe_UP3_Rh8KpcoyLW2luXiG9rGWvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317669907</pqid></control><display><type>article</type><title>An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Devaki, P ; Shree, J Devi ; Nandini, S</creator><creatorcontrib>Devaki, P ; Shree, J Devi ; Nandini, S</creatorcontrib><description>To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and rectifier output voltage are applied to fuzzy logic controller to estimate and control the optimal of maximum output power. The inputs to the FLC are the normalized values of error and variation of error. Triangular membership functions are used for input and output variables. The performance of both the schemes are simulated and a comparison is made. The simulation work is done in MATLAB 2010 environment.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/10933-5882</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><ispartof>International journal of computer applications, 2013-01, Vol.65 (7)</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devaki, P</creatorcontrib><creatorcontrib>Shree, J Devi</creatorcontrib><creatorcontrib>Nandini, S</creatorcontrib><title>An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System</title><title>International journal of computer applications</title><description>To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and rectifier output voltage are applied to fuzzy logic controller to estimate and control the optimal of maximum output power. The inputs to the FLC are the normalized values of error and variation of error. Triangular membership functions are used for input and output variables. The performance of both the schemes are simulated and a comparison is made. The simulation work is done in MATLAB 2010 environment.</description><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdj09Lw0AQxRdRsNRe_AQLXrxEd_Zfdo-lVC1UFCx4LEk6iVuTTd1N0H57F_QgzmHe4_FjeEPIJbAbBZzdArNCZMoYfkImzOYqM8bkp3_8OZnFuGdphOXayglZzz1d-QHb1jXoB_pYfLlu7Ohz_4khbZeyTSiqd-cbOm-bPrjhraN1H-ir8zu69BiaI305xgG7C3JWF23E2a9OyeZuuVk8ZOun-9Vivs4OGmTGZYkgoS4BeFkopcsdWG6RVYjGclZbwW2thdCgSmYM1ByE1AJyrorKopiS65-zh9B_jBiHbedilV4oPPZj3CbaSgFcyYRe_UP3_Rh8KpcoyLW2luXiG9rGWvE</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Devaki, P</creator><creator>Shree, J Devi</creator><creator>Nandini, S</creator><general>Foundation of Computer Science</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20130101</creationdate><title>An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System</title><author>Devaki, P ; Shree, J Devi ; Nandini, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-24be141fb112ba556bd1929e0cee8920f9329f633615b0881f2134631725ac9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Devaki, P</creatorcontrib><creatorcontrib>Shree, J Devi</creatorcontrib><creatorcontrib>Nandini, S</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devaki, P</au><au>Shree, J Devi</au><au>Nandini, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>65</volume><issue>7</issue><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and rectifier output voltage are applied to fuzzy logic controller to estimate and control the optimal of maximum output power. The inputs to the FLC are the normalized values of error and variation of error. Triangular membership functions are used for input and output variables. The performance of both the schemes are simulated and a comparison is made. The simulation work is done in MATLAB 2010 environment.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/10933-5882</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2013-01, Vol.65 (7) |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349431254 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Maximum%20Power%20Point%20Tracking%20Algorithm%20for%20Wind%20Energy%20System&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Devaki,%20P&rft.date=2013-01-01&rft.volume=65&rft.issue=7&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/10933-5882&rft_dat=%3Cproquest%3E1349431254%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317669907&rft_id=info:pmid/&rfr_iscdi=true |