An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System

To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2013-01, Vol.65 (7)
Hauptverfasser: Devaki, P, Shree, J Devi, Nandini, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title International journal of computer applications
container_volume 65
creator Devaki, P
Shree, J Devi
Nandini, S
description To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and rectifier output voltage are applied to fuzzy logic controller to estimate and control the optimal of maximum output power. The inputs to the FLC are the normalized values of error and variation of error. Triangular membership functions are used for input and output variables. The performance of both the schemes are simulated and a comparison is made. The simulation work is done in MATLAB 2010 environment.
doi_str_mv 10.5120/10933-5882
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349431254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1349431254</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-24be141fb112ba556bd1929e0cee8920f9329f633615b0881f2134631725ac9e3</originalsourceid><addsrcrecordid>eNpdj09Lw0AQxRdRsNRe_AQLXrxEd_Zfdo-lVC1UFCx4LEk6iVuTTd1N0H57F_QgzmHe4_FjeEPIJbAbBZzdArNCZMoYfkImzOYqM8bkp3_8OZnFuGdphOXayglZzz1d-QHb1jXoB_pYfLlu7Ohz_4khbZeyTSiqd-cbOm-bPrjhraN1H-ir8zu69BiaI305xgG7C3JWF23E2a9OyeZuuVk8ZOun-9Vivs4OGmTGZYkgoS4BeFkopcsdWG6RVYjGclZbwW2thdCgSmYM1ByE1AJyrorKopiS65-zh9B_jBiHbedilV4oPPZj3CbaSgFcyYRe_UP3_Rh8KpcoyLW2luXiG9rGWvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317669907</pqid></control><display><type>article</type><title>An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Devaki, P ; Shree, J Devi ; Nandini, S</creator><creatorcontrib>Devaki, P ; Shree, J Devi ; Nandini, S</creatorcontrib><description>To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and rectifier output voltage are applied to fuzzy logic controller to estimate and control the optimal of maximum output power. The inputs to the FLC are the normalized values of error and variation of error. Triangular membership functions are used for input and output variables. The performance of both the schemes are simulated and a comparison is made. The simulation work is done in MATLAB 2010 environment.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/10933-5882</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><ispartof>International journal of computer applications, 2013-01, Vol.65 (7)</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devaki, P</creatorcontrib><creatorcontrib>Shree, J Devi</creatorcontrib><creatorcontrib>Nandini, S</creatorcontrib><title>An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System</title><title>International journal of computer applications</title><description>To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and rectifier output voltage are applied to fuzzy logic controller to estimate and control the optimal of maximum output power. The inputs to the FLC are the normalized values of error and variation of error. Triangular membership functions are used for input and output variables. The performance of both the schemes are simulated and a comparison is made. The simulation work is done in MATLAB 2010 environment.</description><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdj09Lw0AQxRdRsNRe_AQLXrxEd_Zfdo-lVC1UFCx4LEk6iVuTTd1N0H57F_QgzmHe4_FjeEPIJbAbBZzdArNCZMoYfkImzOYqM8bkp3_8OZnFuGdphOXayglZzz1d-QHb1jXoB_pYfLlu7Ohz_4khbZeyTSiqd-cbOm-bPrjhraN1H-ir8zu69BiaI305xgG7C3JWF23E2a9OyeZuuVk8ZOun-9Vivs4OGmTGZYkgoS4BeFkopcsdWG6RVYjGclZbwW2thdCgSmYM1ByE1AJyrorKopiS65-zh9B_jBiHbedilV4oPPZj3CbaSgFcyYRe_UP3_Rh8KpcoyLW2luXiG9rGWvE</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Devaki, P</creator><creator>Shree, J Devi</creator><creator>Nandini, S</creator><general>Foundation of Computer Science</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20130101</creationdate><title>An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System</title><author>Devaki, P ; Shree, J Devi ; Nandini, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-24be141fb112ba556bd1929e0cee8920f9329f633615b0881f2134631725ac9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Devaki, P</creatorcontrib><creatorcontrib>Shree, J Devi</creatorcontrib><creatorcontrib>Nandini, S</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devaki, P</au><au>Shree, J Devi</au><au>Nandini, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>65</volume><issue>7</issue><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>To obtain the maximum power from the variable speed wind generator, fuzzy logic controller is used. Hill-Climbing Search (HCS) technique is used to track the maximum power point. The maximum power is tracked for different wind speeds and load impedance variations. The measurement of wind speed, and rectifier output voltage are applied to fuzzy logic controller to estimate and control the optimal of maximum output power. The inputs to the FLC are the normalized values of error and variation of error. Triangular membership functions are used for input and output variables. The performance of both the schemes are simulated and a comparison is made. The simulation work is done in MATLAB 2010 environment.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/10933-5882</doi></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2013-01, Vol.65 (7)
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1349431254
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title An Intelligent Maximum Power Point Tracking Algorithm for Wind Energy System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Intelligent%20Maximum%20Power%20Point%20Tracking%20Algorithm%20for%20Wind%20Energy%20System&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Devaki,%20P&rft.date=2013-01-01&rft.volume=65&rft.issue=7&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/10933-5882&rft_dat=%3Cproquest%3E1349431254%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317669907&rft_id=info:pmid/&rfr_iscdi=true