Neural Model for Content Extraction in Multilingual Web Documents

Neural model for multilingual web documents in Indian sub-continent is gaining prominence in day to day life. While translation and transliteration are gaining its importance on web pages, it becomes difficult for the common man to understand what the web page says about, especially when regional la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2013-01, Vol.65 (4)
Hauptverfasser: Prakash, Kolla Bhanu, Dorai Rangaswamy, M A, Raman, Arun Raja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title International journal of computer applications
container_volume 65
creator Prakash, Kolla Bhanu
Dorai Rangaswamy, M A
Raman, Arun Raja
description Neural model for multilingual web documents in Indian sub-continent is gaining prominence in day to day life. While translation and transliteration are gaining its importance on web pages, it becomes difficult for the common man to understand what the web page says about, especially when regional language is not known to the user. So, our effort here is a generic tool applied in Neural networks to overcome this problem. The model takes inputs in both English and Telugu, an Indian regional language in both printed and handwritten formats. Words having common content are chosen and neural network is used to normalize the output. A sample page from a physics textbook dealing with magnetism is taken for consideration for this paper.
doi_str_mv 10.5120/10909-5837
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349430904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921035311</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-195a9670958cb0354c41e8f11d959f6e59881d0ef0f5d944ff9cb8954ad864d83</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCpbai78g4MXLarL52MyxrPUDWr0UPJY0m8iWNKmbBPz5BvQgzmXew8PwMghdU3InaEvuKQECjVCsO0MzAp1olFLd-Z98iRYpHUgdBq0EPkPLV1sm7fEmDtZjFyfcx5BtyHj1lSdt8hgDHgPeFJ9HP4aPUvG73eOHaMqxunSFLpz2yS5-9xxtH1fb_rlZvz299Mt1c5KUNxSEBtkREMrsCRPccGqVo3QAAU5aAUrRgVhHnBiAc-fA7BUIrgcl-aDYHN3-nD1N8bPYlHfHMRnrvQ42lrSjjANn9QO80pt_9BDLFGq5qmgnpezaln0DrORXtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1317666722</pqid></control><display><type>article</type><title>Neural Model for Content Extraction in Multilingual Web Documents</title><source>EZB Electronic Journals Library</source><creator>Prakash, Kolla Bhanu ; Dorai Rangaswamy, M A ; Raman, Arun Raja</creator><creatorcontrib>Prakash, Kolla Bhanu ; Dorai Rangaswamy, M A ; Raman, Arun Raja</creatorcontrib><description>Neural model for multilingual web documents in Indian sub-continent is gaining prominence in day to day life. While translation and transliteration are gaining its importance on web pages, it becomes difficult for the common man to understand what the web page says about, especially when regional language is not known to the user. So, our effort here is a generic tool applied in Neural networks to overcome this problem. The model takes inputs in both English and Telugu, an Indian regional language in both printed and handwritten formats. Words having common content are chosen and neural network is used to normalize the output. A sample page from a physics textbook dealing with magnetism is taken for consideration for this paper.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/10909-5837</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Dealing ; Indian ; Neural networks ; Regional ; Translations ; Websites ; World Wide Web</subject><ispartof>International journal of computer applications, 2013-01, Vol.65 (4)</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Prakash, Kolla Bhanu</creatorcontrib><creatorcontrib>Dorai Rangaswamy, M A</creatorcontrib><creatorcontrib>Raman, Arun Raja</creatorcontrib><title>Neural Model for Content Extraction in Multilingual Web Documents</title><title>International journal of computer applications</title><description>Neural model for multilingual web documents in Indian sub-continent is gaining prominence in day to day life. While translation and transliteration are gaining its importance on web pages, it becomes difficult for the common man to understand what the web page says about, especially when regional language is not known to the user. So, our effort here is a generic tool applied in Neural networks to overcome this problem. The model takes inputs in both English and Telugu, an Indian regional language in both printed and handwritten formats. Words having common content are chosen and neural network is used to normalize the output. A sample page from a physics textbook dealing with magnetism is taken for consideration for this paper.</description><subject>Dealing</subject><subject>Indian</subject><subject>Neural networks</subject><subject>Regional</subject><subject>Translations</subject><subject>Websites</subject><subject>World Wide Web</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgCpbai78g4MXLarL52MyxrPUDWr0UPJY0m8iWNKmbBPz5BvQgzmXew8PwMghdU3InaEvuKQECjVCsO0MzAp1olFLd-Z98iRYpHUgdBq0EPkPLV1sm7fEmDtZjFyfcx5BtyHj1lSdt8hgDHgPeFJ9HP4aPUvG73eOHaMqxunSFLpz2yS5-9xxtH1fb_rlZvz299Mt1c5KUNxSEBtkREMrsCRPccGqVo3QAAU5aAUrRgVhHnBiAc-fA7BUIrgcl-aDYHN3-nD1N8bPYlHfHMRnrvQ42lrSjjANn9QO80pt_9BDLFGq5qmgnpezaln0DrORXtw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Prakash, Kolla Bhanu</creator><creator>Dorai Rangaswamy, M A</creator><creator>Raman, Arun Raja</creator><general>Foundation of Computer Science</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Neural Model for Content Extraction in Multilingual Web Documents</title><author>Prakash, Kolla Bhanu ; Dorai Rangaswamy, M A ; Raman, Arun Raja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-195a9670958cb0354c41e8f11d959f6e59881d0ef0f5d944ff9cb8954ad864d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dealing</topic><topic>Indian</topic><topic>Neural networks</topic><topic>Regional</topic><topic>Translations</topic><topic>Websites</topic><topic>World Wide Web</topic><toplevel>online_resources</toplevel><creatorcontrib>Prakash, Kolla Bhanu</creatorcontrib><creatorcontrib>Dorai Rangaswamy, M A</creatorcontrib><creatorcontrib>Raman, Arun Raja</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prakash, Kolla Bhanu</au><au>Dorai Rangaswamy, M A</au><au>Raman, Arun Raja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Model for Content Extraction in Multilingual Web Documents</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>65</volume><issue>4</issue><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Neural model for multilingual web documents in Indian sub-continent is gaining prominence in day to day life. While translation and transliteration are gaining its importance on web pages, it becomes difficult for the common man to understand what the web page says about, especially when regional language is not known to the user. So, our effort here is a generic tool applied in Neural networks to overcome this problem. The model takes inputs in both English and Telugu, an Indian regional language in both printed and handwritten formats. Words having common content are chosen and neural network is used to normalize the output. A sample page from a physics textbook dealing with magnetism is taken for consideration for this paper.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/10909-5837</doi></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2013-01, Vol.65 (4)
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1349430904
source EZB Electronic Journals Library
subjects Dealing
Indian
Neural networks
Regional
Translations
Websites
World Wide Web
title Neural Model for Content Extraction in Multilingual Web Documents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Model%20for%20Content%20Extraction%20in%20Multilingual%20Web%20Documents&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Prakash,%20Kolla%20Bhanu&rft.date=2013-01-01&rft.volume=65&rft.issue=4&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/10909-5837&rft_dat=%3Cproquest%3E2921035311%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1317666722&rft_id=info:pmid/&rfr_iscdi=true