The drag coefficient of a sphere: An approximation using Shanks transform

An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved throug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2013-03, Vol.237, p.432-435
Hauptverfasser: Mikhailov, M.D., Freire, A.P. Silva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue
container_start_page 432
container_title Powder technology
container_volume 237
creator Mikhailov, M.D.
Freire, A.P. Silva
description An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000 with a standard deviation of 0.04. Results are compared with eight different formulations of other authors. [Display omitted] ► The drag coefficient of a falling sphere is presented in terms of a non-linear rational fraction. ► The model predicts CD in the range 0.1
doi_str_mv 10.1016/j.powtec.2012.12.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349429292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591012008327</els_id><sourcerecordid>1349429292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-56918939fc2d8343efce8a6770383688f48d456ff7e9f8d8c84dd5285b5407173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gWAugpetySbZZD0IUvwCwYMteAsxO2lT282abP3496aseJQM5PLMzDsPQieUjCmh1cVy3IXPHuy4JLQc5yKM7aARVZIVrFQvu2hECCsLUVOyjw5SWhJCKkbJCD1MF4CbaObYBnDOWw9tj4PDBqduAREu8XWLTdfF8OXXpvehxZvk2zl-Xpj2LeE-mja5ENdHaM-ZVYLj3_8QzW5vppP74vHp7mFy_VhYQURfiKqmqma1s2WjGGfgLChTSUmYYpVSjquGi8o5CbVTjbKKN40olXgVnEgq2SE6H-bmSO8bSL1e-2RhtTIthE3SlPGal3V-GeUDamNIKYLTXcxHxG9Nid6a00s9mNNbczpXNpfbzn43mGTNyuULrU9_vWVOwWVVZ-504JwJ2sxjZmbPeZAgebSUYhvgaiAgC_nwEHXaCrbQ-Ai2103w_0f5AaD0jiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349429292</pqid></control><display><type>article</type><title>The drag coefficient of a sphere: An approximation using Shanks transform</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mikhailov, M.D. ; Freire, A.P. Silva</creator><creatorcontrib>Mikhailov, M.D. ; Freire, A.P. Silva</creatorcontrib><description>An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000 with a standard deviation of 0.04. Results are compared with eight different formulations of other authors. [Display omitted] ► The drag coefficient of a falling sphere is presented in terms of a non-linear rational fraction. ► The model predicts CD in the range 0.1&lt;Rp&lt;100,000 with a standard deviation of 0.04. ► Results are compared with eight different formulations of other authors.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2012.12.033</identifier><identifier>CODEN: POTEBX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Chemical engineering ; drag coefficient ; Drag coefficients ; equations ; Exact sciences and technology ; Fluid flow ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Oseen flow ; Powder technology ; Reynolds number ; Shanks transform ; Solid-solid systems ; Sphere drag ; Standard deviation ; Transforms</subject><ispartof>Powder technology, 2013-03, Vol.237, p.432-435</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-56918939fc2d8343efce8a6770383688f48d456ff7e9f8d8c84dd5285b5407173</citedby><cites>FETCH-LOGICAL-c505t-56918939fc2d8343efce8a6770383688f48d456ff7e9f8d8c84dd5285b5407173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2012.12.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27174769$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhailov, M.D.</creatorcontrib><creatorcontrib>Freire, A.P. Silva</creatorcontrib><title>The drag coefficient of a sphere: An approximation using Shanks transform</title><title>Powder technology</title><description>An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000 with a standard deviation of 0.04. Results are compared with eight different formulations of other authors. [Display omitted] ► The drag coefficient of a falling sphere is presented in terms of a non-linear rational fraction. ► The model predicts CD in the range 0.1&lt;Rp&lt;100,000 with a standard deviation of 0.04. ► Results are compared with eight different formulations of other authors.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Chemical engineering</subject><subject>drag coefficient</subject><subject>Drag coefficients</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Oseen flow</subject><subject>Powder technology</subject><subject>Reynolds number</subject><subject>Shanks transform</subject><subject>Solid-solid systems</subject><subject>Sphere drag</subject><subject>Standard deviation</subject><subject>Transforms</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gWAugpetySbZZD0IUvwCwYMteAsxO2lT282abP3496aseJQM5PLMzDsPQieUjCmh1cVy3IXPHuy4JLQc5yKM7aARVZIVrFQvu2hECCsLUVOyjw5SWhJCKkbJCD1MF4CbaObYBnDOWw9tj4PDBqduAREu8XWLTdfF8OXXpvehxZvk2zl-Xpj2LeE-mja5ENdHaM-ZVYLj3_8QzW5vppP74vHp7mFy_VhYQURfiKqmqma1s2WjGGfgLChTSUmYYpVSjquGi8o5CbVTjbKKN40olXgVnEgq2SE6H-bmSO8bSL1e-2RhtTIthE3SlPGal3V-GeUDamNIKYLTXcxHxG9Nid6a00s9mNNbczpXNpfbzn43mGTNyuULrU9_vWVOwWVVZ-504JwJ2sxjZmbPeZAgebSUYhvgaiAgC_nwEHXaCrbQ-Ai2103w_0f5AaD0jiU</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Mikhailov, M.D.</creator><creator>Freire, A.P. Silva</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130301</creationdate><title>The drag coefficient of a sphere: An approximation using Shanks transform</title><author>Mikhailov, M.D. ; Freire, A.P. Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-56918939fc2d8343efce8a6770383688f48d456ff7e9f8d8c84dd5285b5407173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Chemical engineering</topic><topic>drag coefficient</topic><topic>Drag coefficients</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Oseen flow</topic><topic>Powder technology</topic><topic>Reynolds number</topic><topic>Shanks transform</topic><topic>Solid-solid systems</topic><topic>Sphere drag</topic><topic>Standard deviation</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailov, M.D.</creatorcontrib><creatorcontrib>Freire, A.P. Silva</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailov, M.D.</au><au>Freire, A.P. Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The drag coefficient of a sphere: An approximation using Shanks transform</atitle><jtitle>Powder technology</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>237</volume><spage>432</spage><epage>435</epage><pages>432-435</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><coden>POTEBX</coden><abstract>An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000 with a standard deviation of 0.04. Results are compared with eight different formulations of other authors. [Display omitted] ► The drag coefficient of a falling sphere is presented in terms of a non-linear rational fraction. ► The model predicts CD in the range 0.1&lt;Rp&lt;100,000 with a standard deviation of 0.04. ► Results are compared with eight different formulations of other authors.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2012.12.033</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2013-03, Vol.237, p.432-435
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_miscellaneous_1349429292
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Approximation
Chemical engineering
drag coefficient
Drag coefficients
equations
Exact sciences and technology
Fluid flow
Mathematical analysis
Mathematical models
Miscellaneous
Oseen flow
Powder technology
Reynolds number
Shanks transform
Solid-solid systems
Sphere drag
Standard deviation
Transforms
title The drag coefficient of a sphere: An approximation using Shanks transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20drag%20coefficient%20of%20a%20sphere:%20An%20approximation%20using%20Shanks%20transform&rft.jtitle=Powder%20technology&rft.au=Mikhailov,%20M.D.&rft.date=2013-03-01&rft.volume=237&rft.spage=432&rft.epage=435&rft.pages=432-435&rft.issn=0032-5910&rft.eissn=1873-328X&rft.coden=POTEBX&rft_id=info:doi/10.1016/j.powtec.2012.12.033&rft_dat=%3Cproquest_cross%3E1349429292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349429292&rft_id=info:pmid/&rft_els_id=S0032591012008327&rfr_iscdi=true