The drag coefficient of a sphere: An approximation using Shanks transform
An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved throug...
Gespeichert in:
Veröffentlicht in: | Powder technology 2013-03, Vol.237, p.432-435 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 435 |
---|---|
container_issue | |
container_start_page | 432 |
container_title | Powder technology |
container_volume | 237 |
creator | Mikhailov, M.D. Freire, A.P. Silva |
description | An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000 with a standard deviation of 0.04. Results are compared with eight different formulations of other authors.
[Display omitted]
► The drag coefficient of a falling sphere is presented in terms of a non-linear rational fraction. ► The model predicts CD in the range 0.1 |
doi_str_mv | 10.1016/j.powtec.2012.12.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349429292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591012008327</els_id><sourcerecordid>1349429292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-56918939fc2d8343efce8a6770383688f48d456ff7e9f8d8c84dd5285b5407173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gWAugpetySbZZD0IUvwCwYMteAsxO2lT282abP3496aseJQM5PLMzDsPQieUjCmh1cVy3IXPHuy4JLQc5yKM7aARVZIVrFQvu2hECCsLUVOyjw5SWhJCKkbJCD1MF4CbaObYBnDOWw9tj4PDBqduAREu8XWLTdfF8OXXpvehxZvk2zl-Xpj2LeE-mja5ENdHaM-ZVYLj3_8QzW5vppP74vHp7mFy_VhYQURfiKqmqma1s2WjGGfgLChTSUmYYpVSjquGi8o5CbVTjbKKN40olXgVnEgq2SE6H-bmSO8bSL1e-2RhtTIthE3SlPGal3V-GeUDamNIKYLTXcxHxG9Nid6a00s9mNNbczpXNpfbzn43mGTNyuULrU9_vWVOwWVVZ-504JwJ2sxjZmbPeZAgebSUYhvgaiAgC_nwEHXaCrbQ-Ai2103w_0f5AaD0jiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349429292</pqid></control><display><type>article</type><title>The drag coefficient of a sphere: An approximation using Shanks transform</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Mikhailov, M.D. ; Freire, A.P. Silva</creator><creatorcontrib>Mikhailov, M.D. ; Freire, A.P. Silva</creatorcontrib><description>An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000 with a standard deviation of 0.04. Results are compared with eight different formulations of other authors.
[Display omitted]
► The drag coefficient of a falling sphere is presented in terms of a non-linear rational fraction. ► The model predicts CD in the range 0.1<Rp<100,000 with a standard deviation of 0.04. ► Results are compared with eight different formulations of other authors.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2012.12.033</identifier><identifier>CODEN: POTEBX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Chemical engineering ; drag coefficient ; Drag coefficients ; equations ; Exact sciences and technology ; Fluid flow ; Mathematical analysis ; Mathematical models ; Miscellaneous ; Oseen flow ; Powder technology ; Reynolds number ; Shanks transform ; Solid-solid systems ; Sphere drag ; Standard deviation ; Transforms</subject><ispartof>Powder technology, 2013-03, Vol.237, p.432-435</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-56918939fc2d8343efce8a6770383688f48d456ff7e9f8d8c84dd5285b5407173</citedby><cites>FETCH-LOGICAL-c505t-56918939fc2d8343efce8a6770383688f48d456ff7e9f8d8c84dd5285b5407173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2012.12.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27174769$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhailov, M.D.</creatorcontrib><creatorcontrib>Freire, A.P. Silva</creatorcontrib><title>The drag coefficient of a sphere: An approximation using Shanks transform</title><title>Powder technology</title><description>An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000 with a standard deviation of 0.04. Results are compared with eight different formulations of other authors.
[Display omitted]
► The drag coefficient of a falling sphere is presented in terms of a non-linear rational fraction. ► The model predicts CD in the range 0.1<Rp<100,000 with a standard deviation of 0.04. ► Results are compared with eight different formulations of other authors.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Chemical engineering</subject><subject>drag coefficient</subject><subject>Drag coefficients</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Oseen flow</subject><subject>Powder technology</subject><subject>Reynolds number</subject><subject>Shanks transform</subject><subject>Solid-solid systems</subject><subject>Sphere drag</subject><subject>Standard deviation</subject><subject>Transforms</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gWAugpetySbZZD0IUvwCwYMteAsxO2lT282abP3496aseJQM5PLMzDsPQieUjCmh1cVy3IXPHuy4JLQc5yKM7aARVZIVrFQvu2hECCsLUVOyjw5SWhJCKkbJCD1MF4CbaObYBnDOWw9tj4PDBqduAREu8XWLTdfF8OXXpvehxZvk2zl-Xpj2LeE-mja5ENdHaM-ZVYLj3_8QzW5vppP74vHp7mFy_VhYQURfiKqmqma1s2WjGGfgLChTSUmYYpVSjquGi8o5CbVTjbKKN40olXgVnEgq2SE6H-bmSO8bSL1e-2RhtTIthE3SlPGal3V-GeUDamNIKYLTXcxHxG9Nid6a00s9mNNbczpXNpfbzn43mGTNyuULrU9_vWVOwWVVZ-504JwJ2sxjZmbPeZAgebSUYhvgaiAgC_nwEHXaCrbQ-Ai2103w_0f5AaD0jiU</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Mikhailov, M.D.</creator><creator>Freire, A.P. Silva</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130301</creationdate><title>The drag coefficient of a sphere: An approximation using Shanks transform</title><author>Mikhailov, M.D. ; Freire, A.P. Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-56918939fc2d8343efce8a6770383688f48d456ff7e9f8d8c84dd5285b5407173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Chemical engineering</topic><topic>drag coefficient</topic><topic>Drag coefficients</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Oseen flow</topic><topic>Powder technology</topic><topic>Reynolds number</topic><topic>Shanks transform</topic><topic>Solid-solid systems</topic><topic>Sphere drag</topic><topic>Standard deviation</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhailov, M.D.</creatorcontrib><creatorcontrib>Freire, A.P. Silva</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhailov, M.D.</au><au>Freire, A.P. Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The drag coefficient of a sphere: An approximation using Shanks transform</atitle><jtitle>Powder technology</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>237</volume><spage>432</spage><epage>435</epage><pages>432-435</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><coden>POTEBX</coden><abstract>An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational fractional transform of the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) to Oseen's equation. The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000 with a standard deviation of 0.04. Results are compared with eight different formulations of other authors.
[Display omitted]
► The drag coefficient of a falling sphere is presented in terms of a non-linear rational fraction. ► The model predicts CD in the range 0.1<Rp<100,000 with a standard deviation of 0.04. ► Results are compared with eight different formulations of other authors.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2012.12.033</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5910 |
ispartof | Powder technology, 2013-03, Vol.237, p.432-435 |
issn | 0032-5910 1873-328X |
language | eng |
recordid | cdi_proquest_miscellaneous_1349429292 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Approximation Chemical engineering drag coefficient Drag coefficients equations Exact sciences and technology Fluid flow Mathematical analysis Mathematical models Miscellaneous Oseen flow Powder technology Reynolds number Shanks transform Solid-solid systems Sphere drag Standard deviation Transforms |
title | The drag coefficient of a sphere: An approximation using Shanks transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20drag%20coefficient%20of%20a%20sphere:%20An%20approximation%20using%20Shanks%20transform&rft.jtitle=Powder%20technology&rft.au=Mikhailov,%20M.D.&rft.date=2013-03-01&rft.volume=237&rft.spage=432&rft.epage=435&rft.pages=432-435&rft.issn=0032-5910&rft.eissn=1873-328X&rft.coden=POTEBX&rft_id=info:doi/10.1016/j.powtec.2012.12.033&rft_dat=%3Cproquest_cross%3E1349429292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349429292&rft_id=info:pmid/&rft_els_id=S0032591012008327&rfr_iscdi=true |