Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model

Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of e-health and medical communications 2010-01, Vol.1 (1), p.41-52
Hauptverfasser: Handayani, Astri, Suksmono, Andriyan B, Mengko, Tati L.R, Hirose, Akira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 41
container_title International journal of e-health and medical communications
container_volume 1
creator Handayani, Astri
Suksmono, Andriyan B
Mengko, Tati L.R
Hirose, Akira
description Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm.
doi_str_mv 10.4018/jehmc.2010010104
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349426662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760138779</galeid><sourcerecordid>A760138779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c01f1e760733c59232d9772901a7223fe619264dc93c5190bbd39aa5d933acaa3</originalsourceid><addsrcrecordid>eNp1kc1vFCEYhydGE5vau0cSLx6cytfAclw31jZpY2K18UZYeGeWlYF1YNT-91LXuLVRQgIJDy-_l6dpnhN8yjFZvN7CZrSnFBNcJ8H8UXNEFJctI2Lx-M---_y0Ocl5i-vouBRSHjXwJqTk0A3kDAFdwzBCLKb4FJGPaJXGXYAf7Y0JMzh0ZYYIxVv0AXKKJlpAF6MZIKPvvmzQdTRfAC1t8d-gXo0lzRO6Sg7Cs-ZJb0KGk9_rcfPp7O3H1Xl7-f7dxWp52VouutJaTHoCUmDJmO0UZdQpKanCxEhKWQ-CKCq4s6oeE4XXa8eUMZ1TjBlrDDtuXu7r7qb0dYZc9OizhRBMhDRnTRhXnAohaEVfPEC3NW6s6TRVTFKOBWcHajABtI99KpOxd0X1suYkbCGlqtSre9R6zj7W__Qx-2FT8mDmnP_G8R63U8p5gl7vJj-a6VYTrO986l8-9cHnoTE_-EPQh5jeub6iZ_9And4r1vcV14b--yRhPwHHP7ah</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937240643</pqid></control><display><type>article</type><title>Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Handayani, Astri ; Suksmono, Andriyan B ; Mengko, Tati L.R ; Hirose, Akira</creator><creatorcontrib>Handayani, Astri ; Suksmono, Andriyan B ; Mengko, Tati L.R ; Hirose, Akira</creatorcontrib><description>Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm.</description><identifier>ISSN: 1947-315X</identifier><identifier>EISSN: 1947-3168</identifier><identifier>DOI: 10.4018/jehmc.2010010104</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Annealing ; Blood flow ; Blood vessels ; Contours ; Dynamical systems ; Flow velocity ; Image segmentation ; Magnetic resonance ; Magnetic resonance imaging ; Segmentation ; Shape ; Simulated annealing ; Snakes ; Velocity measurement</subject><ispartof>International journal of e-health and medical communications, 2010-01, Vol.1 (1), p.41-52</ispartof><rights>COPYRIGHT 2010 IGI Global</rights><rights>Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c01f1e760733c59232d9772901a7223fe619264dc93c5190bbd39aa5d933acaa3</citedby><cites>FETCH-LOGICAL-c465t-c01f1e760733c59232d9772901a7223fe619264dc93c5190bbd39aa5d933acaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2937240643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,43781</link.rule.ids></links><search><creatorcontrib>Handayani, Astri</creatorcontrib><creatorcontrib>Suksmono, Andriyan B</creatorcontrib><creatorcontrib>Mengko, Tati L.R</creatorcontrib><creatorcontrib>Hirose, Akira</creatorcontrib><title>Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model</title><title>International journal of e-health and medical communications</title><description>Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm.</description><subject>Algorithms</subject><subject>Annealing</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Contours</subject><subject>Dynamical systems</subject><subject>Flow velocity</subject><subject>Image segmentation</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Simulated annealing</subject><subject>Snakes</subject><subject>Velocity measurement</subject><issn>1947-315X</issn><issn>1947-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1vFCEYhydGE5vau0cSLx6cytfAclw31jZpY2K18UZYeGeWlYF1YNT-91LXuLVRQgIJDy-_l6dpnhN8yjFZvN7CZrSnFBNcJ8H8UXNEFJctI2Lx-M---_y0Ocl5i-vouBRSHjXwJqTk0A3kDAFdwzBCLKb4FJGPaJXGXYAf7Y0JMzh0ZYYIxVv0AXKKJlpAF6MZIKPvvmzQdTRfAC1t8d-gXo0lzRO6Sg7Cs-ZJb0KGk9_rcfPp7O3H1Xl7-f7dxWp52VouutJaTHoCUmDJmO0UZdQpKanCxEhKWQ-CKCq4s6oeE4XXa8eUMZ1TjBlrDDtuXu7r7qb0dYZc9OizhRBMhDRnTRhXnAohaEVfPEC3NW6s6TRVTFKOBWcHajABtI99KpOxd0X1suYkbCGlqtSre9R6zj7W__Qx-2FT8mDmnP_G8R63U8p5gl7vJj-a6VYTrO986l8-9cHnoTE_-EPQh5jeub6iZ_9And4r1vcV14b--yRhPwHHP7ah</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Handayani, Astri</creator><creator>Suksmono, Andriyan B</creator><creator>Mengko, Tati L.R</creator><creator>Hirose, Akira</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100101</creationdate><title>Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model</title><author>Handayani, Astri ; Suksmono, Andriyan B ; Mengko, Tati L.R ; Hirose, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c01f1e760733c59232d9772901a7223fe619264dc93c5190bbd39aa5d933acaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Annealing</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Contours</topic><topic>Dynamical systems</topic><topic>Flow velocity</topic><topic>Image segmentation</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Simulated annealing</topic><topic>Snakes</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handayani, Astri</creatorcontrib><creatorcontrib>Suksmono, Andriyan B</creatorcontrib><creatorcontrib>Mengko, Tati L.R</creatorcontrib><creatorcontrib>Hirose, Akira</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of e-health and medical communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handayani, Astri</au><au>Suksmono, Andriyan B</au><au>Mengko, Tati L.R</au><au>Hirose, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model</atitle><jtitle>International journal of e-health and medical communications</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>1</volume><issue>1</issue><spage>41</spage><epage>52</epage><pages>41-52</pages><issn>1947-315X</issn><eissn>1947-3168</eissn><abstract>Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/jehmc.2010010104</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1947-315X
ispartof International journal of e-health and medical communications, 2010-01, Vol.1 (1), p.41-52
issn 1947-315X
1947-3168
language eng
recordid cdi_proquest_miscellaneous_1349426662
source Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Annealing
Blood flow
Blood vessels
Contours
Dynamical systems
Flow velocity
Image segmentation
Magnetic resonance
Magnetic resonance imaging
Segmentation
Shape
Simulated annealing
Snakes
Velocity measurement
title Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20Vessel%20Segmentation%20in%20Complex-Valued%20Magnetic%20Resonance%20Images%20with%20Snake%20Active%20Contour%20Model&rft.jtitle=International%20journal%20of%20e-health%20and%20medical%20communications&rft.au=Handayani,%20Astri&rft.date=2010-01-01&rft.volume=1&rft.issue=1&rft.spage=41&rft.epage=52&rft.pages=41-52&rft.issn=1947-315X&rft.eissn=1947-3168&rft_id=info:doi/10.4018/jehmc.2010010104&rft_dat=%3Cgale_proqu%3EA760138779%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937240643&rft_id=info:pmid/&rft_galeid=A760138779&rfr_iscdi=true