Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model
Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The prop...
Gespeichert in:
Veröffentlicht in: | International journal of e-health and medical communications 2010-01, Vol.1 (1), p.41-52 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | International journal of e-health and medical communications |
container_volume | 1 |
creator | Handayani, Astri Suksmono, Andriyan B Mengko, Tati L.R Hirose, Akira |
description | Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm. |
doi_str_mv | 10.4018/jehmc.2010010104 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349426662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760138779</galeid><sourcerecordid>A760138779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c01f1e760733c59232d9772901a7223fe619264dc93c5190bbd39aa5d933acaa3</originalsourceid><addsrcrecordid>eNp1kc1vFCEYhydGE5vau0cSLx6cytfAclw31jZpY2K18UZYeGeWlYF1YNT-91LXuLVRQgIJDy-_l6dpnhN8yjFZvN7CZrSnFBNcJ8H8UXNEFJctI2Lx-M---_y0Ocl5i-vouBRSHjXwJqTk0A3kDAFdwzBCLKb4FJGPaJXGXYAf7Y0JMzh0ZYYIxVv0AXKKJlpAF6MZIKPvvmzQdTRfAC1t8d-gXo0lzRO6Sg7Cs-ZJb0KGk9_rcfPp7O3H1Xl7-f7dxWp52VouutJaTHoCUmDJmO0UZdQpKanCxEhKWQ-CKCq4s6oeE4XXa8eUMZ1TjBlrDDtuXu7r7qb0dYZc9OizhRBMhDRnTRhXnAohaEVfPEC3NW6s6TRVTFKOBWcHajABtI99KpOxd0X1suYkbCGlqtSre9R6zj7W__Qx-2FT8mDmnP_G8R63U8p5gl7vJj-a6VYTrO986l8-9cHnoTE_-EPQh5jeub6iZ_9And4r1vcV14b--yRhPwHHP7ah</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937240643</pqid></control><display><type>article</type><title>Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Handayani, Astri ; Suksmono, Andriyan B ; Mengko, Tati L.R ; Hirose, Akira</creator><creatorcontrib>Handayani, Astri ; Suksmono, Andriyan B ; Mengko, Tati L.R ; Hirose, Akira</creatorcontrib><description>Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm.</description><identifier>ISSN: 1947-315X</identifier><identifier>EISSN: 1947-3168</identifier><identifier>DOI: 10.4018/jehmc.2010010104</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Annealing ; Blood flow ; Blood vessels ; Contours ; Dynamical systems ; Flow velocity ; Image segmentation ; Magnetic resonance ; Magnetic resonance imaging ; Segmentation ; Shape ; Simulated annealing ; Snakes ; Velocity measurement</subject><ispartof>International journal of e-health and medical communications, 2010-01, Vol.1 (1), p.41-52</ispartof><rights>COPYRIGHT 2010 IGI Global</rights><rights>Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c01f1e760733c59232d9772901a7223fe619264dc93c5190bbd39aa5d933acaa3</citedby><cites>FETCH-LOGICAL-c465t-c01f1e760733c59232d9772901a7223fe619264dc93c5190bbd39aa5d933acaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2937240643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,43781</link.rule.ids></links><search><creatorcontrib>Handayani, Astri</creatorcontrib><creatorcontrib>Suksmono, Andriyan B</creatorcontrib><creatorcontrib>Mengko, Tati L.R</creatorcontrib><creatorcontrib>Hirose, Akira</creatorcontrib><title>Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model</title><title>International journal of e-health and medical communications</title><description>Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm.</description><subject>Algorithms</subject><subject>Annealing</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Contours</subject><subject>Dynamical systems</subject><subject>Flow velocity</subject><subject>Image segmentation</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Simulated annealing</subject><subject>Snakes</subject><subject>Velocity measurement</subject><issn>1947-315X</issn><issn>1947-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1vFCEYhydGE5vau0cSLx6cytfAclw31jZpY2K18UZYeGeWlYF1YNT-91LXuLVRQgIJDy-_l6dpnhN8yjFZvN7CZrSnFBNcJ8H8UXNEFJctI2Lx-M---_y0Ocl5i-vouBRSHjXwJqTk0A3kDAFdwzBCLKb4FJGPaJXGXYAf7Y0JMzh0ZYYIxVv0AXKKJlpAF6MZIKPvvmzQdTRfAC1t8d-gXo0lzRO6Sg7Cs-ZJb0KGk9_rcfPp7O3H1Xl7-f7dxWp52VouutJaTHoCUmDJmO0UZdQpKanCxEhKWQ-CKCq4s6oeE4XXa8eUMZ1TjBlrDDtuXu7r7qb0dYZc9OizhRBMhDRnTRhXnAohaEVfPEC3NW6s6TRVTFKOBWcHajABtI99KpOxd0X1suYkbCGlqtSre9R6zj7W__Qx-2FT8mDmnP_G8R63U8p5gl7vJj-a6VYTrO986l8-9cHnoTE_-EPQh5jeub6iZ_9And4r1vcV14b--yRhPwHHP7ah</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Handayani, Astri</creator><creator>Suksmono, Andriyan B</creator><creator>Mengko, Tati L.R</creator><creator>Hirose, Akira</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100101</creationdate><title>Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model</title><author>Handayani, Astri ; Suksmono, Andriyan B ; Mengko, Tati L.R ; Hirose, Akira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c01f1e760733c59232d9772901a7223fe619264dc93c5190bbd39aa5d933acaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Annealing</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Contours</topic><topic>Dynamical systems</topic><topic>Flow velocity</topic><topic>Image segmentation</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Simulated annealing</topic><topic>Snakes</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Handayani, Astri</creatorcontrib><creatorcontrib>Suksmono, Andriyan B</creatorcontrib><creatorcontrib>Mengko, Tati L.R</creatorcontrib><creatorcontrib>Hirose, Akira</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of e-health and medical communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Handayani, Astri</au><au>Suksmono, Andriyan B</au><au>Mengko, Tati L.R</au><au>Hirose, Akira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model</atitle><jtitle>International journal of e-health and medical communications</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>1</volume><issue>1</issue><spage>41</spage><epage>52</epage><pages>41-52</pages><issn>1947-315X</issn><eissn>1947-3168</eissn><abstract>Accurate blood vessel segmentation plays a crucial role in non-invasive blood flow velocity measurement based on complex-valued magnetic resonance images. We propose a specific snake active contour model-based blood vessel segmentation framework for complex-valued magnetic resonance images. The proposed framework combines both magnitude and phase information from a complex-valued image representation to obtain an optimum segmentation result. Magnitude information of the complex-valued image provides a structural localization of the target object, while phase information identifies the existence of flowing matters within the object. Snake active contour model, which models the segmentation procedure as a force-balancing physical system, is being adopted as a framework for this work due to its interactive, dynamic, and customizable characteristics. Two snake-based segmentation models are developed to produce a more accurate segmentation result, namely the Model-constrained Gradient Vector Flow-snake (MC GVF-snake) and Stochastic-snake. MC GVF-snake elaborates a prior knowledge on common physical structure of the target object to restrict and guide the segmentation mechanism, while Stochastic-snake implements the simulated annealing stochastic procedure to produce improved segmentation accuracy. The developed segmentation framework has been evaluated on actual complex-valued MRI images, both in noise-free and noisy simulated conditions. Evaluation results indicate that both of the developed algorithms give an improved segmentation performance as well as increased robustness, in comparison to the conventional snake algorithm.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/jehmc.2010010104</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1947-315X |
ispartof | International journal of e-health and medical communications, 2010-01, Vol.1 (1), p.41-52 |
issn | 1947-315X 1947-3168 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349426662 |
source | Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Annealing Blood flow Blood vessels Contours Dynamical systems Flow velocity Image segmentation Magnetic resonance Magnetic resonance imaging Segmentation Shape Simulated annealing Snakes Velocity measurement |
title | Blood Vessel Segmentation in Complex-Valued Magnetic Resonance Images with Snake Active Contour Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20Vessel%20Segmentation%20in%20Complex-Valued%20Magnetic%20Resonance%20Images%20with%20Snake%20Active%20Contour%20Model&rft.jtitle=International%20journal%20of%20e-health%20and%20medical%20communications&rft.au=Handayani,%20Astri&rft.date=2010-01-01&rft.volume=1&rft.issue=1&rft.spage=41&rft.epage=52&rft.pages=41-52&rft.issn=1947-315X&rft.eissn=1947-3168&rft_id=info:doi/10.4018/jehmc.2010010104&rft_dat=%3Cgale_proqu%3EA760138779%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937240643&rft_id=info:pmid/&rft_galeid=A760138779&rfr_iscdi=true |