A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System
An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. T...
Gespeichert in:
Veröffentlicht in: | ISRN applied mathematics 2012-01, Vol.2012 (2012), p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2012 |
container_start_page | 1 |
container_title | ISRN applied mathematics |
container_volume | 2012 |
creator | Liu, Tang-Wei Xu, He-Hua Qiu, Xue-Lin |
description | An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. Then the transformed equations are solved by mixed FEMs which can provide the numerical approximation formulas for pressure and velocity at the same time. With some assumptions, the multiscale basis functions are constructed by utilizing the effects of fine-scale heterogeneities through basis functions formulation computed from local flow problems. Without time step in discrete process, the present method is efficient when solving spatial discrete problems. At last, the associated pressure transform is inverted by the method of numerical inversion of the Laplace transform. |
doi_str_mv | 10.5402/2012/202893 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349424930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827450271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2983-a6100c92a6e3cd70e60aac9282cf5f4aecac9701de6a135387a57052f7b3ab23</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AiCop68iwEvIhSzY8mXY8ynQobCu5e3tpXjKTJTFLm_nszKh68mMNLHnwI7_HNsjNGb2RB-S2nbFf4pBJ72RGnFc2lLPn-71sVh9lpCB80HSUZV-ooi3dk6vqVthC1s2SB8d21xHVkob-wJYvBRB0aMEhm2uqI-YPBHm0kYFsyh7WBBsnSgw2d8z1JhcyM2xBtCZD7AUz-ir5HWGmj45a8bUPE_iQ76MAEPP25j7Pl7GE5fcrnL4_P07t5DryaiBwUo7SpOCgUTVtSVBQg9RPedLIrAJvUlZS1qIAJKSYlyJJK3pUrASsujrPL8du1d58Dhlj3aRc0Biy6IdRMFFXBi0rQRC_-0A83eJuGqxnnVAnB5U5dj6rxLgSPXb32uge_rRmtdxnUuwzqMYOkr0b9rm0LG_0PPh8xJoId_OJCFoxR8Q1x1Y49</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220633250</pqid></control><display><type>article</type><title>A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Tang-Wei ; Xu, He-Hua ; Qiu, Xue-Lin</creator><contributor>Kyriacou, G. ; Du, H.</contributor><creatorcontrib>Liu, Tang-Wei ; Xu, He-Hua ; Qiu, Xue-Lin ; Kyriacou, G. ; Du, H.</creatorcontrib><description>An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. Then the transformed equations are solved by mixed FEMs which can provide the numerical approximation formulas for pressure and velocity at the same time. With some assumptions, the multiscale basis functions are constructed by utilizing the effects of fine-scale heterogeneities through basis functions formulation computed from local flow problems. Without time step in discrete process, the present method is efficient when solving spatial discrete problems. At last, the associated pressure transform is inverted by the method of numerical inversion of the Laplace transform.</description><identifier>ISSN: 2090-5564</identifier><identifier>ISSN: 2090-5572</identifier><identifier>EISSN: 2090-5572</identifier><identifier>DOI: 10.5402/2012/202893</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Applied mathematics ; Approximation ; Basis functions ; Boundary conditions ; Finite element analysis ; Finite element method ; Finite volume method ; Heterogeneity ; Laplace transforms ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Partial differential equations ; Permeability ; Studies ; Transforms ; Velocity</subject><ispartof>ISRN applied mathematics, 2012-01, Vol.2012 (2012), p.1-10</ispartof><rights>Copyright © 2012 Tang-Wei Liu et al.</rights><rights>Copyright © 2012 Tang-Wei Liu et al. Tang-Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2983-a6100c92a6e3cd70e60aac9282cf5f4aecac9701de6a135387a57052f7b3ab23</citedby><cites>FETCH-LOGICAL-a2983-a6100c92a6e3cd70e60aac9282cf5f4aecac9701de6a135387a57052f7b3ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kyriacou, G.</contributor><contributor>Du, H.</contributor><creatorcontrib>Liu, Tang-Wei</creatorcontrib><creatorcontrib>Xu, He-Hua</creatorcontrib><creatorcontrib>Qiu, Xue-Lin</creatorcontrib><title>A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System</title><title>ISRN applied mathematics</title><description>An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. Then the transformed equations are solved by mixed FEMs which can provide the numerical approximation formulas for pressure and velocity at the same time. With some assumptions, the multiscale basis functions are constructed by utilizing the effects of fine-scale heterogeneities through basis functions formulation computed from local flow problems. Without time step in discrete process, the present method is efficient when solving spatial discrete problems. At last, the associated pressure transform is inverted by the method of numerical inversion of the Laplace transform.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Heterogeneity</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Permeability</subject><subject>Studies</subject><subject>Transforms</subject><subject>Velocity</subject><issn>2090-5564</issn><issn>2090-5572</issn><issn>2090-5572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0c9LwzAUB_AiCop68iwEvIhSzY8mXY8ynQobCu5e3tpXjKTJTFLm_nszKh68mMNLHnwI7_HNsjNGb2RB-S2nbFf4pBJ72RGnFc2lLPn-71sVh9lpCB80HSUZV-ooi3dk6vqVthC1s2SB8d21xHVkob-wJYvBRB0aMEhm2uqI-YPBHm0kYFsyh7WBBsnSgw2d8z1JhcyM2xBtCZD7AUz-ir5HWGmj45a8bUPE_iQ76MAEPP25j7Pl7GE5fcrnL4_P07t5DryaiBwUo7SpOCgUTVtSVBQg9RPedLIrAJvUlZS1qIAJKSYlyJJK3pUrASsujrPL8du1d58Dhlj3aRc0Biy6IdRMFFXBi0rQRC_-0A83eJuGqxnnVAnB5U5dj6rxLgSPXb32uge_rRmtdxnUuwzqMYOkr0b9rm0LG_0PPh8xJoId_OJCFoxR8Q1x1Y49</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Liu, Tang-Wei</creator><creator>Xu, He-Hua</creator><creator>Qiu, Xue-Lin</creator><general>Hindawi Puplishing Corporation</general><general>International Scholarly Research Network</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System</title><author>Liu, Tang-Wei ; Xu, He-Hua ; Qiu, Xue-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2983-a6100c92a6e3cd70e60aac9282cf5f4aecac9701de6a135387a57052f7b3ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Heterogeneity</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Permeability</topic><topic>Studies</topic><topic>Transforms</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tang-Wei</creatorcontrib><creatorcontrib>Xu, He-Hua</creatorcontrib><creatorcontrib>Qiu, Xue-Lin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISRN applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tang-Wei</au><au>Xu, He-Hua</au><au>Qiu, Xue-Lin</au><au>Kyriacou, G.</au><au>Du, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System</atitle><jtitle>ISRN applied mathematics</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2090-5564</issn><issn>2090-5572</issn><eissn>2090-5572</eissn><abstract>An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. Then the transformed equations are solved by mixed FEMs which can provide the numerical approximation formulas for pressure and velocity at the same time. With some assumptions, the multiscale basis functions are constructed by utilizing the effects of fine-scale heterogeneities through basis functions formulation computed from local flow problems. Without time step in discrete process, the present method is efficient when solving spatial discrete problems. At last, the associated pressure transform is inverted by the method of numerical inversion of the Laplace transform.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.5402/2012/202893</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2090-5564 |
ispartof | ISRN applied mathematics, 2012-01, Vol.2012 (2012), p.1-10 |
issn | 2090-5564 2090-5572 2090-5572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1349424930 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Applied mathematics Approximation Basis functions Boundary conditions Finite element analysis Finite element method Finite volume method Heterogeneity Laplace transforms Mathematical analysis Mathematical models Numerical analysis Partial differential equations Permeability Studies Transforms Velocity |
title | A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Combination%20Method%20of%20Mixed%20Multiscale%20Finite-Element%20and%20Laplace%20Transform%20for%20Flow%20in%20a%20Dual-Permeability%20System&rft.jtitle=ISRN%20applied%20mathematics&rft.au=Liu,%20Tang-Wei&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2090-5564&rft.eissn=2090-5572&rft_id=info:doi/10.5402/2012/202893&rft_dat=%3Cproquest_cross%3E2827450271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220633250&rft_id=info:pmid/&rfr_iscdi=true |