A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System

An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN applied mathematics 2012-01, Vol.2012 (2012), p.1-10
Hauptverfasser: Liu, Tang-Wei, Xu, He-Hua, Qiu, Xue-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2012
container_start_page 1
container_title ISRN applied mathematics
container_volume 2012
creator Liu, Tang-Wei
Xu, He-Hua
Qiu, Xue-Lin
description An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. Then the transformed equations are solved by mixed FEMs which can provide the numerical approximation formulas for pressure and velocity at the same time. With some assumptions, the multiscale basis functions are constructed by utilizing the effects of fine-scale heterogeneities through basis functions formulation computed from local flow problems. Without time step in discrete process, the present method is efficient when solving spatial discrete problems. At last, the associated pressure transform is inverted by the method of numerical inversion of the Laplace transform.
doi_str_mv 10.5402/2012/202893
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1349424930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827450271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2983-a6100c92a6e3cd70e60aac9282cf5f4aecac9701de6a135387a57052f7b3ab23</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AiCop68iwEvIhSzY8mXY8ynQobCu5e3tpXjKTJTFLm_nszKh68mMNLHnwI7_HNsjNGb2RB-S2nbFf4pBJ72RGnFc2lLPn-71sVh9lpCB80HSUZV-ooi3dk6vqVthC1s2SB8d21xHVkob-wJYvBRB0aMEhm2uqI-YPBHm0kYFsyh7WBBsnSgw2d8z1JhcyM2xBtCZD7AUz-ir5HWGmj45a8bUPE_iQ76MAEPP25j7Pl7GE5fcrnL4_P07t5DryaiBwUo7SpOCgUTVtSVBQg9RPedLIrAJvUlZS1qIAJKSYlyJJK3pUrASsujrPL8du1d58Dhlj3aRc0Biy6IdRMFFXBi0rQRC_-0A83eJuGqxnnVAnB5U5dj6rxLgSPXb32uge_rRmtdxnUuwzqMYOkr0b9rm0LG_0PPh8xJoId_OJCFoxR8Q1x1Y49</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220633250</pqid></control><display><type>article</type><title>A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Tang-Wei ; Xu, He-Hua ; Qiu, Xue-Lin</creator><contributor>Kyriacou, G. ; Du, H.</contributor><creatorcontrib>Liu, Tang-Wei ; Xu, He-Hua ; Qiu, Xue-Lin ; Kyriacou, G. ; Du, H.</creatorcontrib><description>An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. Then the transformed equations are solved by mixed FEMs which can provide the numerical approximation formulas for pressure and velocity at the same time. With some assumptions, the multiscale basis functions are constructed by utilizing the effects of fine-scale heterogeneities through basis functions formulation computed from local flow problems. Without time step in discrete process, the present method is efficient when solving spatial discrete problems. At last, the associated pressure transform is inverted by the method of numerical inversion of the Laplace transform.</description><identifier>ISSN: 2090-5564</identifier><identifier>ISSN: 2090-5572</identifier><identifier>EISSN: 2090-5572</identifier><identifier>DOI: 10.5402/2012/202893</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Applied mathematics ; Approximation ; Basis functions ; Boundary conditions ; Finite element analysis ; Finite element method ; Finite volume method ; Heterogeneity ; Laplace transforms ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Partial differential equations ; Permeability ; Studies ; Transforms ; Velocity</subject><ispartof>ISRN applied mathematics, 2012-01, Vol.2012 (2012), p.1-10</ispartof><rights>Copyright © 2012 Tang-Wei Liu et al.</rights><rights>Copyright © 2012 Tang-Wei Liu et al. Tang-Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2983-a6100c92a6e3cd70e60aac9282cf5f4aecac9701de6a135387a57052f7b3ab23</citedby><cites>FETCH-LOGICAL-a2983-a6100c92a6e3cd70e60aac9282cf5f4aecac9701de6a135387a57052f7b3ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kyriacou, G.</contributor><contributor>Du, H.</contributor><creatorcontrib>Liu, Tang-Wei</creatorcontrib><creatorcontrib>Xu, He-Hua</creatorcontrib><creatorcontrib>Qiu, Xue-Lin</creatorcontrib><title>A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System</title><title>ISRN applied mathematics</title><description>An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. Then the transformed equations are solved by mixed FEMs which can provide the numerical approximation formulas for pressure and velocity at the same time. With some assumptions, the multiscale basis functions are constructed by utilizing the effects of fine-scale heterogeneities through basis functions formulation computed from local flow problems. Without time step in discrete process, the present method is efficient when solving spatial discrete problems. At last, the associated pressure transform is inverted by the method of numerical inversion of the Laplace transform.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Heterogeneity</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Permeability</subject><subject>Studies</subject><subject>Transforms</subject><subject>Velocity</subject><issn>2090-5564</issn><issn>2090-5572</issn><issn>2090-5572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0c9LwzAUB_AiCop68iwEvIhSzY8mXY8ynQobCu5e3tpXjKTJTFLm_nszKh68mMNLHnwI7_HNsjNGb2RB-S2nbFf4pBJ72RGnFc2lLPn-71sVh9lpCB80HSUZV-ooi3dk6vqVthC1s2SB8d21xHVkob-wJYvBRB0aMEhm2uqI-YPBHm0kYFsyh7WBBsnSgw2d8z1JhcyM2xBtCZD7AUz-ir5HWGmj45a8bUPE_iQ76MAEPP25j7Pl7GE5fcrnL4_P07t5DryaiBwUo7SpOCgUTVtSVBQg9RPedLIrAJvUlZS1qIAJKSYlyJJK3pUrASsujrPL8du1d58Dhlj3aRc0Biy6IdRMFFXBi0rQRC_-0A83eJuGqxnnVAnB5U5dj6rxLgSPXb32uge_rRmtdxnUuwzqMYOkr0b9rm0LG_0PPh8xJoId_OJCFoxR8Q1x1Y49</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Liu, Tang-Wei</creator><creator>Xu, He-Hua</creator><creator>Qiu, Xue-Lin</creator><general>Hindawi Puplishing Corporation</general><general>International Scholarly Research Network</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120101</creationdate><title>A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System</title><author>Liu, Tang-Wei ; Xu, He-Hua ; Qiu, Xue-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2983-a6100c92a6e3cd70e60aac9282cf5f4aecac9701de6a135387a57052f7b3ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Heterogeneity</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Permeability</topic><topic>Studies</topic><topic>Transforms</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tang-Wei</creatorcontrib><creatorcontrib>Xu, He-Hua</creatorcontrib><creatorcontrib>Qiu, Xue-Lin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISRN applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tang-Wei</au><au>Xu, He-Hua</au><au>Qiu, Xue-Lin</au><au>Kyriacou, G.</au><au>Du, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System</atitle><jtitle>ISRN applied mathematics</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2090-5564</issn><issn>2090-5572</issn><eissn>2090-5572</eissn><abstract>An efficient combination method of Laplace transform and mixed multiscale finite-element method for coupling partial differential equations of flow in a dual-permeability system is present. First, the time terms of parabolic equation with unknown pressure term are removed by the Laplace transform. Then the transformed equations are solved by mixed FEMs which can provide the numerical approximation formulas for pressure and velocity at the same time. With some assumptions, the multiscale basis functions are constructed by utilizing the effects of fine-scale heterogeneities through basis functions formulation computed from local flow problems. Without time step in discrete process, the present method is efficient when solving spatial discrete problems. At last, the associated pressure transform is inverted by the method of numerical inversion of the Laplace transform.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.5402/2012/202893</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-5564
ispartof ISRN applied mathematics, 2012-01, Vol.2012 (2012), p.1-10
issn 2090-5564
2090-5572
2090-5572
language eng
recordid cdi_proquest_miscellaneous_1349424930
source EZB-FREE-00999 freely available EZB journals
subjects Applied mathematics
Approximation
Basis functions
Boundary conditions
Finite element analysis
Finite element method
Finite volume method
Heterogeneity
Laplace transforms
Mathematical analysis
Mathematical models
Numerical analysis
Partial differential equations
Permeability
Studies
Transforms
Velocity
title A Combination Method of Mixed Multiscale Finite-Element and Laplace Transform for Flow in a Dual-Permeability System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Combination%20Method%20of%20Mixed%20Multiscale%20Finite-Element%20and%20Laplace%20Transform%20for%20Flow%20in%20a%20Dual-Permeability%20System&rft.jtitle=ISRN%20applied%20mathematics&rft.au=Liu,%20Tang-Wei&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2090-5564&rft.eissn=2090-5572&rft_id=info:doi/10.5402/2012/202893&rft_dat=%3Cproquest_cross%3E2827450271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220633250&rft_id=info:pmid/&rfr_iscdi=true